期刊文献+

基于金字塔梯度方向直方图的分层投票方法 被引量:1

Layered Vote Method Based on Pyramid Histogram of Oriented Gradient
下载PDF
导出
摘要 提出一种基于金字塔梯度方向直方图的分层投票方法,将其用于人脸识别、对象识别和对象检测等领域。利用分层投票机制选出分类效果最好的层,并为它们赋予相应的投票权值,最终对图像类别进行投票。在ORL和UIUC Car数据库上进行实验,结果表明,改进方法优于传统的特征向量分类方法。 On the basis of Pyramid Histogram of Oriented Gradient(PHOG), a new layered vote method is presented. It is used in the area of face recognition, object recognition, and object detection. By using the layered vote, it can concentrate the attention on the levels which have high recognition rate, and the weights of vote are set to these chosen levels. The final result is got by vote for the object category. This method is tested on ORL and UIUC Car database, and the results show that it is better than traditional classification method.
出处 《计算机工程》 CAS CSCD 2012年第8期156-158,共3页 Computer Engineering
基金 国家自然科学基金资助重点项目(61033012)
关键词 梯度直方图 空间金字塔 分层投票 图像块 支持向量机 Histogram of Gradient(HOG) spaeial pyramid layered vote image block Support Vector Machine(SVM)
  • 相关文献

参考文献9

  • 1曹健,王武军,韩飞,刘玉树.基于局部特征的目标识别技术研究[J].计算机工程,2010,36(10):203-205. 被引量:14
  • 2Wu Jianixn,Rehg J M.Where Am I:Place Instance and Category Recognition Using Spatial PACT[C]//Proc.of CVPR’08.Anchorage,USA:[s.n.],2008:2221-2228.
  • 3Lazebnik S,Schmid C,Ponce J.Beyond Bags of Features:Spatial Pyramid Matching for Recognizing Natural Scene Categories[C]//Proc.of CVPR’06.New York,USA:[s.n.],2006:2169-2178.
  • 4Bai Yang,Guo Lihua,Jin Lianwen,et al.A Novel Feature Extraction Method Using Pyramid Histogram of Orientation Gradients for Smile Recognition[C]//Proc.of IEEE ICIP’09.Cairo,Egypt:[s.n.],2009:3269-3272.
  • 5Kleban J,Xing Xie,Ma Weiying,et al.Pyramid Mining for Logo Detection in Natural Scenes[C]//Proc.of IEEE International Conference on Multimedia and Expo.Hannover,Germany:[s.n.],2008:1077-1080.
  • 6Dalal N,Triggs B.Histograms of Oriented Gradients for Human Detection[C]//Proc.of IEEE CVPR’05.San Diego,USA:IEEE Press,2005:886-893.
  • 7Bosch A,Zisserman A,Munoz X.Representing Shape with a Spatial Pyramid Kernel[C]//Proc.of CIVR’07.New York,USA:[s.n.],2007:401-408.
  • 8李晖,曲仕茹.基于分层梯度方向直方图和SVM的人体识别[J].计算机测量与控制,2010,18(11):2602-2604. 被引量:7
  • 9Lampert C H,Blaschko M B.Beyond Sliding Wndows:Object Localization by Efficient Subwindow Search[C]//Proc.of CVPR’08.Anchorage,USA:[s.n.],2008.

二级参考文献19

  • 1陈晓飞,王润生.目标骨架的多尺度树表示[J].计算机学报,2004,27(11):1540-1545. 被引量:4
  • 2周振环.基于角点特征的形状识别[J].计算机工程,2007,33(6):22-23. 被引量:9
  • 3王鹏伟,吴秀清,余珊.基于角点特征和自适应核聚类算法的目标识别[J].计算机工程,2007,33(6):179-181. 被引量:16
  • 4Dinesh R,Guru D S.Recognition of Partially Occluded Objects Using Perfect Hashing:An Efficient and Robust Approach[C]// Proceedings of CRV'05.Victoria,Canada:[s.n.],2005:528-535.
  • 5Sun S G,Park H W.Automatic Target Recognition Using Boundary Partitioning and Invariant Features in Forward-looking Infrared Images[J].Optical Engineering,2003,42(2):524-533.
  • 6David P,de Menthon D.Object Recognition in High Clutter Images Using Line Features[C]//Proceedings of ICCV'05.Beijing,China:[s.n.],2005:1581-1588.
  • 7Rahman M M,Ishikawa S.Eigenwindow Method Updated by a Mean Eigenwindow[C]//Proceedings of SICE Annual Conference.Sapporo,Japan:[s.n.],2004:513-516.
  • 8Stark M,Schiele B.How Good Are Local Features for Classes of Geometric Objects[C]//Proceedings of ICCV'07.Rio de Janeiro,Brazil:[s.n.],2007:1-8.
  • 9Leibe B,Leonardis A,Schiele B.Robust Object Detection with Interleaved Categorization and Segmentation[J].International Journal of Computer Vision,2008,77(1):259-289.
  • 10Zhang Jianguo,Marszalek M.Local Features and Kernels for Classification of Texture and Object Categories:A Comprehensive Study[J].International Journal of Computer Vision,2007,73(2):213-238.

共引文献19

同被引文献10

  • 1王培容,陈鸿雁,李姣军.一种快速的具有旋转不变性的模板匹配方法[J].计算机工程与设计,2006,27(14):2667-2668. 被引量:5
  • 2《国防科技工业无损检测人员资格鉴定与认证培训教材》编审委员会编,吴孝俭,闫荣鑫主编.泄漏检测[M]. 机械工业出版社, 2005
  • 3(美) 冈萨雷斯 (Gonzalez,R.C.) 等,著.数字图像处理MATLAB版[M]. 电子工业出版社, 2004
  • 4Pedro Felzenszwalb,Ross Girshick,David McAllester,Deva Ramanan.Visual object detection with deformable part models[J].Communications of the ACM.2013(9)
  • 5Erik Cuevas,Alonso Echavarría,Daniel Zaldívar,Marco Pérez-Cisneros.A novel evolutionary algorithm inspired by the states of matter for template matching[J].Expert Systems With Applications.2013(16)
  • 6David G. Lowe.Distinctive Image Features from Scale-Invariant Keypoints[J].International Journal of Computer Vision.2004(2)
  • 7Paul Viola,Michael J. Jones.Robust Real-Time Face Detection[J].International Journal of Computer Vision.2004(2)
  • 8姜映映,田丰,王绪刚,戴国忠.基于模板匹配和SVM的草图符号自适应识别方法[J].计算机学报,2009,32(2):252-260. 被引量:18
  • 9刘志强,翟营,秦洪懋.梯度向量直方图的行人检测[J].机械设计与制造,2011(11):245-247. 被引量:4
  • 10谢志江,吕波,刘琴,陈平.旋转不变性图像模板匹配快速算法[J].吉林大学学报(工学版),2013,43(3):711-717. 被引量:13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部