期刊文献+

基于杂合支持向量回归机的电子装备故障预测 被引量:8

Fault Prediction for Electronic Equipment Based on Hybrid Support Vector Regression
下载PDF
导出
摘要 针对电子装备性能特征参数间的耦合关联问题,提出一种基于杂合支持向量回归机的电子装备故障预测方法。运用D-S证据理论,结合参数的纵向历史状态数据和横向的相关参数数据,设计杂合支持向量回归机预测算法,利用特征参数的时间相关性和空间相关性提高预测精度。实验结果表明,相对于单独使用纵向或者横向的支持向量回归机,该方法具有更高的精度,可有效地对复杂电子装备实施故障预测。 Aiming at the coupling relationship among electronic equipment's feature parameters, a hybrid Support Vector Regression(SVR) based fault prediction model is proposed in the paper, both the time relativity and space relativity of the feature parameter are taken into account, and it designes the algorithm process of hybrid SVR which improves the prediction accuracy by fusing the vertical historical state data and the horizontal correlation parameter together, applying D-S evidence theory. Experimental results show that, compared with vertical SVR or horizontal SVR, the proposed method is more accurate, and is capable of performing fault prognosis on the complicated electronic equipment effectively.
出处 《计算机工程》 CAS CSCD 2012年第8期283-286,共4页 Computer Engineering
关键词 电子装备 故障预测 杂合支持向量回归机 D—S证据理论 特征参数 诊断精度 electronic equipment fault prediction hybrid Support Vector Regression(SVR) D-S evidence theory feature parameter diagnosisaccuracy
  • 相关文献

参考文献7

二级参考文献34

共引文献15

同被引文献111

引证文献8

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部