期刊文献+

不同核函数RVM的冰凌检测能力比较

Comparison of River Ice Detection Capabilities of Different RVM Kernel Function
下载PDF
导出
摘要 利用HJ-1A/1B卫星CCD数据进行黄河凌汛监测,提出了利用相关向量机的检测冰凌,并对比了不同核函数的冰凌检测效果。实验结果显示利用RVM和HJ-1A/1B卫星CCD数据能有效提取出黄河冰凌范围,RBF核函数的稳定性和精度要高于改进型RBF核函数,但改进型RBF核函数的相关向量的个数要明显少于RBF核函数,因此测试速度要高于RBF核函数。 In this paper we presented a river ice detection method based on relevance vector machines(RVM) use HJ-1A/1B CCD data,and compared ice detection accuracy of the different kernel functions.Experimental results clearly demonstrated that RBF kernel function was more stabile than adapted RBF kernel,detection accuracy of RBF kernel function was slightly higher than adapted RBF kernel,however the sparsity of adapted RBF kernel was higher than RBF kernel function which lead to much faster testing time.
出处 《地理空间信息》 2012年第2期67-69,75,共4页 Geospatial Information
关键词 凌汛 冰凌 RVM RBF HJ ice flood,river ice,RVM,RBF,HJ
  • 相关文献

参考文献7

  • 1鄢俊洁,刘良明,马浩录,许志辉.MODIS数据在黄河凌汛监测中的应用[J].武汉大学学报(信息科学版),2004,29(8):679-681. 被引量:20
  • 2Demir B,Erturk S. Hyperspectral Image Classification Using Re-levance Vector Machines[J].IEEE Geoscience and Remote Sen-sing Letters,2007.586-590.
  • 3Michael Tipping. Sparse Bayesian Learning and the RelevanceVector Machine[J].JM Learn Res,2001.211-244.
  • 4ME Tipping,AC Faul. Fast Marginal Likelihood Maximisationfor Sparse Bayesian Models[M].Ninth Int.Workshop Artificial Intelligence and Statistics,2003.
  • 5Bishop C,Tipping M. Variational Relevance Vector Machines[D].iMorgan Kaufmann,2000.
  • 6GM Foody. RVM-based Multi-class Classification of Remotely Sensed Data[J].International Journal of Remote Sensing,2008,(06):1817-1823.doi:10.1080/01431160701822115.
  • 7Zhang Lefei,Zhang Liangpei. A Multifeature Tensor for Remote-Sensing Target Recognition[J].IEEE Geos cience and Remote Sensing Letters,2011,(02):374-378.

二级参考文献5

  • 1刘玉洁,杨忠东.MODIS遥感信息处理原理与算法.北京:科学出版社,2001.180-197
  • 2Riggs G A,Hall D K,Salomonson V V.A Snow Index of the Landsat Thematic Mapper and Moderate Resolution Imaging Spectroradiometer.Geoscience and Remote Sensing Symposium,1994(4):1 942~1 944
  • 3Klein A G,Hall D K,Riggs G A.Improving the MODIS Global Snowing-Mapping Algorithm.Geoscience and Remote Sensing,1997(2):619~621
  • 4水利部黄河水利委员会.[EB/OL].黄河网.http://www.yellowriver.goc.cn,2003.
  • 5延昊.NOAA16卫星积雪识别和参数提取[J].冰川冻土,2004,26(3):369-373. 被引量:44

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部