期刊文献+

一种频繁子图挖掘算法 被引量:7

Algorithm for Frequent Subgraph Mining
下载PDF
导出
摘要 为减少频繁子图规范化检测的时间复杂度,对规范化邻接矩阵的相关性质进行分析。给出相关定理并证明其正确性,从而减少冗余候选子图的产生。在此基础上,提出一种频繁子图挖掘算法——FSM_CAM。实验结果证明,与现有频繁子图挖掘算法FSubGraphM相比,FSM_CAM算法的效率较高。 To reduce the frequent subgraph canonical detection time complexity,this paper discusses the relevant properties of the canonical adjacency matrix.In order to reduce the generation of redundant candidate subgraphs,it proposes the theorem to reduce redundancy candidate subgraph generation,and proves its correctness.Based on this,it proposes a frequent subgraph mining algorithms called FSM_CAM.Experimental results show that FSM_CAM algorithm's efficiency is greatly improved compared with existing frequent subgraph mining algorithms FsubGraphM.
作者 唐德权 谭阳
出处 《计算机工程》 CAS CSCD 2012年第7期31-33,共3页 Computer Engineering
基金 湖南省教育厅科研基金资助项目(10C0134) 湖南省教育厅基金资助重点项目(10A074) 湖南省自然科学基金资助项目(06JJ50107)
关键词 频繁子图 规范邻接矩阵 候选子图 数据挖掘 frequent subgraph Canonical Adjacency Matrix(CAM) candidate subgraph data mining
  • 相关文献

参考文献9

  • 1陈小辉.基于数据挖掘算法的入侵检测方法[J].计算机工程,2010,36(17):72-73. 被引量:14
  • 2Koyuturk M,Grama A,Szpankowski W. An Eficient Algorithm for Detecting Frequent Subgraphs in Biological Networks[A].Glasgow,UK,2004.
  • 3Kuramochi M,Karypis G. Frequent Subgraph Discovery[A].San Jose,California,U.S.A,2001.
  • 4唐德权,夏幼明,张丽英.基于图的数据挖掘算法研究[J].云南师范大学学报(自然科学版),2007,27(5):30-34. 被引量:5
  • 5唐德权,朱林立.频繁子图挖掘算法研究[J].计算机工程,2009,35(9):52-54. 被引量:9
  • 6Dehaspe L,Toivonen H,King R D. Fining Frequent Substructures in Chemical Compounds[A].New York,USA,1998.
  • 7Srinisavan A,King R D,Muggleton S H. The Predictive Toxicology Evaluation Challenge[A].Nagoya,Japan,1997.
  • 8Inokuchi A,Motoda T H. Complete Mining of Frequent Patterns from Graphs:Mining Graph Data[J].Machine Learning,2003,(03):321-354.
  • 9Huan Jun,Wang Wei,Prins J. Spin:Mining Maximal Frequent Subgraphs from Graph Database[A].Washington,DC:USA,2004.

二级参考文献7

共引文献24

同被引文献28

  • 1刘扬,曹宝峰,李茂生.遗传小波神经网络实现人脸和语音的认证系统[J].计算机工程与应用,2006,42(18):50-52. 被引量:7
  • 2Mannila H, Toivonen H, Verkamo I. Discovery of frequent epi- sodes in event sequences[J]. Data Mining and Knowledge Disco- very,1997, 1(3):259-289.
  • 3Holland J.H. Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan press, 1975.
  • 4Agrawal. R, Imielinski T, Swami A. Mining association Rules be- tween Sets of items inLarge Databases[A]. Proc 1993 ACM_SIG MOD into Conf Management of Databases[C]. Washington, DC: ACM Press, 1993: 207-216.
  • 5余小双.遗传算法及其在数据挖掘中的应用研究[D].武汉:武汉纺织大学硕士论文,2010.
  • 6Intel Lab Data Site[EB/OL]. http://db.csail.mit.edu/labdata/lab- data.html.(2010-1-1.
  • 7Washio T, Motoda H. State of the Art of Graph-based Data Mining[ J ]. ACM SIGKDD Explorations Newsletter,2003,5 (1) :59 -68.
  • 8Wang K, Hart J. Bide:Efficient mining of frequent closed sequences [ C ]//International Conference on Data Engineering,2004.
  • 9Martin Y C, Kofron J L, Traphagen L M. Do structurally similar mole- cules have similar biological activity? [ J ] J. Med. Chem. 2002,45 : 4350 - 4358.
  • 10Gunter S, Bunke H. Validation indices for graph clustering [ J ]. Pattern Reeogn. Lett. ,2003,24 ( 8 ) : 1107 - 1113.

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部