期刊文献+

WG序列和Hyperoval序列的互相关性研究

Research on Cross-correlation Properties Between Welch-Gong Sequences and Hyperoval Sequences
下载PDF
导出
摘要 针对伪随机序列中的伪随机特性问题,利用从F2 n到F 2的迹函数在一点处的Walsh谱表示法,对n为奇数时的WG序列和Hyperoval序列及其采样序列间的互相关函数进行研究。分析结果表明,WG序列Hyperoval序列间的互相关函数及WG序列和采样间隔为1/(k 1)的Glynn类型Ⅱ的Hyperoval序列间的互相关函数均可转化为m-序列与其采样序列间的互相关函数。 In accordance with the pseudorandom properties of pseudorandom sequences,this paper investigates the cross-correlation functions between Welch-Gong(WG) sequences and Hyperoval sequences(decimated Hyperoval sequences with one particular exponent) for odd n by using the Walsh spectrum representations of trace functions from to.In the correspondence,it shows that the calculation of the cross-correlation functions between WG sequences and Hyperoval sequences(Glynn Ⅱ of Hyperoval sequences under an-decimation) are all related to the cross-correlation functions between m-sequences and their decimations.
出处 《计算机工程》 CAS CSCD 2012年第7期96-98,共3页 Computer Engineering
基金 安徽省自然科学研究基金资助项目(KJ2011B146) 安徽省淮北师范大学青年科研基金资助项目(2012xq45)
关键词 迹函数 理想自相关函数 互相关函数 WALSH谱 WG序列 Hyperoval序列 trace function ideal auto-correlation function cross-correlation function Walsh spectrum Welch-Gong(WG) sequences Hyperoval sequences
  • 相关文献

参考文献16

  • 1Jungnickel D,Pott A. Perfect and Almost Perfect Sequences[J].Discrete Applied Mathematics,1999,(1-3):331-359.
  • 2Gordon B,Mills W H,Welch L R. Some New Difference Sets[J].Canadian Journal of Mathematics,1962,(04):614-625.
  • 3No J S,Golomb S W,Gong Guang. Binary Pseudorandom Sequences of Period 2m-1 with Ideal Autocorrelation[J].IEEE Transactions on Information theory,1998,(02):814-817.
  • 4Dillon J F,Dobbertin H. New Cyclic Difference Sets with Singer Parameters[J].Finite Fields and Their Applications,2004,(03):342-389.
  • 5Maschietti A. Difference Sets and Hyperovals[J].Designs Codes and Cryptography,1998,(01):89-98.
  • 6Gold R. Maximal Recursive Sequences with 3-valued Recursive Cross-correlation Functions[J].IEEE Transactions on Information theory,1968,(01):154-156.
  • 7Games R A. Crosscorrelation of M-sequences and GMWsequences with the Same Primitive Polynomial[J].Discrete Applied Mathematics,1985,(02):139-146.
  • 8Antweiler M. Cross-correlation of P-ary GMW Sequences[J].IEEE Transactions on Information theory,1994,(04):1253-1261.
  • 9Gong Guang,Golomb S W. The Decimation-Hadamard Transform of Two-level Autocorrelation Sequences[J].IEEE Transactions on Information theory,2002,(04):853-865.
  • 10Nam Yul-Yu,Gong Guang. Crosscorrelation Properties of Binary Sequences with Ideal Two-level Autocorrelation[A].Springer-verlag,2006.104-118.

二级参考文献30

  • 1DONG Lihua HU Yupu.On the Joint Nonlinear Span of Multiple Binary Sequence[J].Chinese Journal of Electronics,2007,16(2):321-325. 被引量:1
  • 2佟鑫,温巧燕.GMW序列和WG序列及WG序列间的互相关特性[J].通信学报,2007,28(7):118-122. 被引量:4
  • 3Jungnickel D, Pon A. Perfect and almost perfect sequences[ J]. Discrete Applied Mathmatics, 1999, 95 ( 1- 3) : 331-359.
  • 4Gordon B, Mills W H, Welch L R. Some new difference sets [ J]. Canadian Journal of Mathematics, 1962, 14 (4) : 614-625.
  • 5Dillon J F, Dobbertin H. New cyclic difference sets with singer parameters [ J]. Finite Fields and Their Applications, 2004, 10(3): 342-389.
  • 6No J S, Golomb S W, Gong G, et al. Binary pseudorandom sequences of period 2^m - 1 with ideal autocorrelation [J]. IEEE Trans on Inform Theory, 1998, 44(2) : 814- 817.
  • 7Maschietti A. Difference sets and hyperovals [ J ]. Designs, Codes and Cryptography, 1998, 14 ( 1 ) : 89- 98.
  • 8Gold R. Maximal recursive sequences with 3-valued recursive cross-correlation functions [ J]. IEEE Trans Inform Theory, 1968(14): 154-156.
  • 9Games R A. Cross-correlation of m-sequences and GMW- sequences with the same primitive polynomial [ J]. Discrete Applied Mathematics, 1985, 12: 139-146.
  • 10Antweiler M. Cross-correlation of p-ary GMW sequences [J]. IEEE Trans Inform Theory, 1994, 40(4): 1253- 1261.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部