期刊文献+

基于对数Gabor的超复数视觉显著性检测算法 被引量:5

Hypercomplex Visual Saliency Detection Algorithm Based on Log-Gabor
下载PDF
导出
摘要 为在没有先验知识的情况下准确获取图像显著性目标,提出一种基于对数Gabor滤波器和超复数傅里叶变换的视觉显著性检测算法。利用对数Gabor滤波器模仿人类视觉感受野,对输入图像进行预处理,提取颜色、纹理方向等特征。根据所得特征构造各尺度下的超复数图像,并求其傅里叶变换相位谱,将多尺度超复数相位谱反变换后进行归一化,从而获得视觉显著图。实验结果表明,该算法与传统的算法相比具有更高的准确率,应用于复杂场景下的交通标志检测能取得较好的检测效果。 In order to obtain more accurate salient object from an image in the absence of priori knowledge,this paper proposes a visual saliency detection algorithm based on Log-Gabor filter and hypercomplex Fourier transform.It uses Log-Gabor filter to process input image and obtain color and texture feature,constructs a hypercomplex image using feature images,and calculates its Fourier transform phase spectral.It calculates visual saliency map by normalization.Experimental results show that the proposed method outperforms state-of-the-art methods remarkably in visual saliency and has better detection results in traffic sign detection.
出处 《计算机工程》 CAS CSCD 2012年第7期148-151,154,共5页 Computer Engineering
基金 甘肃省自然科学基金资助项目(1014ZSB064) 中央高校基本科研业务费专项基金资助项目(XJJ20100062)
关键词 视觉显著性 对数Gabor 超复数 傅里叶变换 多尺度 显著图 visual saliency Log-Gabor hypercomplex Fourier transform multi-scale saliency map
  • 相关文献

参考文献11

  • 1Achanta R,Hemami S,Estrada F. Frequency-tuned Salient Region Detection[A].Miami,USA:IEEE Press,2009.
  • 2Ko B,Nam J. Object-of-interest Image Segmentation Based on Human Attention and Semantic Region Clustering[J].Journal of the Optical Society of America A:Optics,Image Science and Vision,2006,(10):2462-2470.
  • 3Won Woong-Jae,Lee Min-Ho,Son Joon-Woo. Implementation of Road Traffic Signs Detection Based on Saliency Map Model[A].IEEE Press,2008.
  • 4王晶,王向阳.基于人类视觉系统的数字图像水印方法[J].计算机工程,2011,37(13):107-108. 被引量:7
  • 5Itti L,Koch C,Niebur E. A Model of Saliency-based Visual Attention for Rapid Scene Analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,(11):1254-1259.doi:10.1109/34.730558.
  • 6Hou Xiaodi,Zhang Liqing. Saliency Detection:A Spectral Residual Approach[A].Minneapolis,USA:IEEE Press,2007.
  • 7Guo Chenlei,Ma Qi,Zhang Liming. Spatio-temporal Saliency Detection Using Phase Spectrum of Quatemion Fourier Transform[A].Anchorage,USA:IEEE Press,2008.
  • 8丁名晓,王云宽,黄为.基于Gabor滤波器的棉花杂质检测算法[J].中国图象图形学报,2011,16(4):586-592. 被引量:6
  • 9陈巍,李天瑞,龚勋.基于Log-Gabor统计采样的人脸识别方法[J].计算机工程,2011,37(17):163-166. 被引量:4
  • 10Liu Tie,Sun Jian,Zheng Nanning. Learning to Detect a Salient Object[A].Minneapolis,USA:IEEE Press,2007.

二级参考文献30

  • 1朱伟涛,刘士荣.基于二维Gabor小波和支持向量机的人脸识别[J].杭州电子科技大学学报(自然科学版),2009,29(6):53-56. 被引量:2
  • 2刘九芬,黄达人,黄继武.图像水印抗几何攻击研究综述[J].电子与信息学报,2004,26(9):1495-1503. 被引量:43
  • 3朱振峰,卢汉清.基于奇Gabor滤波器与Rayleigh分布的边缘检测[J].中国图象图形学报,2005,10(7):821-827. 被引量:4
  • 4Turk M, Pentland A. Sigenfaces for Recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86.
  • 5Etemad K, Chellappa R. Discriminant Analysis for Recognition of Human Face Images[J]. Journal of the Optical Society of America, 1997, 8(14): 1724-1738.
  • 6Lawrence S, Giles C L, Tsoi A C, et al. Face Recognition: A Convolutional Neural Network Approach[J]. IEEE Transactions on Neural Networks, 1997, 8(1): 98-113.
  • 7Wiskott L, Fellous J M, Kruger N, et al. Face Recognition by Elastic Bunch Graph Matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 775-779.
  • 8Liu Chengjun, Wechsler H. Gabor Feature Based Classification Using the Enhanced Fisher Linear Discriminant Model for Face Recognition[J]. IEEE Transactions on Image Processing, 2002, 11(4): 467-475.
  • 9Shen Linlin, Li Bai, Fairhurst M. Gabor Wavelets and General Discriminant Analysis for Face Identification and Verification[J]. Image and Vision Computing, 2007, 25(5): 553-563.
  • 10Xiao Zhitao, Guo Chengming. Research on log Gabor Wavelet and Its Application in Image Edge Detection[C]//Proceedings of the 6th International Conference on Signal Processing. Beijing, China: [s. n.], 2002: 592-595.

共引文献14

同被引文献50

  • 1冯广生,李文英.图像处理技术在胶带撕裂检测中的应用[J].机械工程与自动化,2007(3):104-106. 被引量:5
  • 2魏军伟,方敏.基于最大熵和形态学的边缘检测[J].计算机工程与应用,2007,43(21):70-71. 被引量:11
  • 3Bemsen J. Dynamic thresholding of gray-level image. Proc.of the 8th International Conference Pattern Recognition. Paris France: IEEE Press, 1986:1251-1255.
  • 4Hou XD, Zhang LQ. Saliency detection:a spectral residual approach. IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, USA:lEEE Press,2007:1-8.
  • 5Kapur JN, Sahoo PK, Wong AKC. A new method for gray- level picture thresholding using the histogram. Computer Vi- sion,Graphics and Imajze Processing,1985.(29):237-285.
  • 6Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Patt Anal and Mach, 1998,20(11): 1254-1259.
  • 7Itti L, Koch C. A saliency-based serch mechanism for overt and cover shifts of visual attention. Vision Research, 2000, 40(10-12):1489-1506.
  • 8魏涛.煤炭输送带裂纹检测技术研究[硕士学位论文].太原:中北大学,2010.
  • 9张安宁,孙宇坤,尹中会.带式输送机防纵撕保护研究现状及趋势[J].煤炭科学技术,2007,35(12):77-79. 被引量:32
  • 10ITTI L, KOCH C, NIEBUR E. A model of saliency-based visu- al attention for rapid scene analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20(11) : 1254- 1259.

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部