期刊文献+

基于人工免疫网络的正交小波盲均衡算法 被引量:1

Orthogonal Wavelet Blind Equalization Algorithm Based on Artificial Immune Network
下载PDF
导出
摘要 传统的常数模盲均衡算法存在收敛速度慢、均方误差大、易陷入局部极小值点等缺点。为此,提出一种基于人工免疫系统的正交小波盲均衡算法。该算法将均衡器系数向量作为抗体,经过抗体克隆、变异和抑制等操作,搜索到适应度值最高的抗体,即均衡器的最优系数,使权向量跳出局部最优点,接近全局最优点,并利用正交小波变换改善常数模盲均衡算法的收敛性,降低均方误差。仿真实验结果表明,该算法收敛速度快、均方误差小,能得到全局最优解。 The traditional constant modulus blind equalization algorithm has some disadvantages such as slow convergence speed,large mean square error,and easily falling into local minimum points.Aiming at these shortcomings,wavelet blind equalization algorithm based on artificial immune system is presented.In the presented algorithm,the equalizer coefficient vector is regarded as antibodies and the optimal solutions can be obtained by replication,mutation and suppression.It can make weight vector escape from local minima and approach the global minima.Its convergence speed can be improved via using orthogonal wavelet transform and its mean-square error can be reduced by artificial immune algorithm.Simulation results show that this presented algorithm has rapid convergence speed,small mean square error and can obtain global optimum solution.
作者 郭业才 孙凤
出处 《计算机工程》 CAS CSCD 2012年第7期158-160,共3页 Computer Engineering
基金 全国优秀博士学位论文作者专项基金资助项目(200753) 安徽省高等学校自然科学基金资助项目(KJ2010A096) 江苏省自然科学基金资助项目(BK2009410) 江苏省高等学校自然科学基金资助项目(08KJB510010) 江苏省六大人才高峰基金资助项目(2008026)
关键词 盲均衡 免疫网络 小波 全局收敛 函数优化 常数模算法 blind equalization immune network wavelet global convergence function optimization Constant Modulus Algorithm(CMA)
  • 相关文献

参考文献7

  • 1Guo Yecai,Han Yingge,Yang Chao. Orthogonal Wavelet Transform Based Sign Decision Dual-mode Blind Equalization Algorithm[A].IEEE Press,2008.80-83.
  • 2郭业才.通信信号分析与处理[M]合肥:合肥工业大学出版社,2009.
  • 3Tang Hongzhong,Xiao Yewei,Huang Huixian. A Novel Dynamic Particle Swarm Optimization Algorithm Based on Improved Artificial Immune Network[A].IEEE Press,2010.103-106.
  • 4张全平,吴耿锋.基于人工免疫网络的神经网络集成方法[J].计算机工程,2008,34(23):199-201. 被引量:2
  • 5王秋生;高绍坤;崔勇.基于人工免疫网络和AR模型的聚类与预测算法[J]仪器仪表学报,2008(08):91-95.
  • 6Li Chunhua,Zhu Xinjan,Hu Wanqi. A Novel Multi-objective Optimization Algorithm Based on Artificial Immune System[A].IEEE Press,2009.569-574.
  • 7刘锋,葛临东,吴业进,刘世刚.基于人工免疫网络的盲均衡算法[J].计算机工程,2009,35(10):196-197. 被引量:3

二级参考文献10

  • 1张晓丹,赵海.神经网络集成融合模型研究及应用[J].计算机工程,2007,33(14):210-212. 被引量:2
  • 2Hansen L K, Salamon R Neural Networks Ensembles[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1990, 12(10): 993-1001.
  • 3Breiman L. Bagging Predictors[J]. Machine Learning, 1996, 24(2): 123-140.
  • 4Liu Yong, Yao Xin. Simultaneous Training of Negatively Correlated Neural Networks in an Ensemble[J]. IEEE Trans. on Systems, Man, and Cybernetics, 1999, 29(6): 716-725.
  • 5Zhou Zhihua, Wu Jianxin, Tang Wei. Ensembling Neural Networks: Many Could be Better than All[J]. Artificial Intelligence, 2002, 137(1/2): 239-263.
  • 6De Castro L N, Timmis J. An Artificial Immune Network fbr Multi-modal Function Optimization[C]//Proc. of IEEE Congress on Evolutionary Computation. [S. I.]: IEEE Press, 2002,
  • 7Johnson C R, Schniter P, Enders T J, et al. Blind Equalization Using the Constant Modulus Criterion: A Review[C]//Proc. of the IEEE Int'l Conf. on Blind System Identification and Estimation. [S. l.]: IEEE Press, 1998.
  • 8Hart E, Timmis J. Application Areas of AIS: The Past, Present and the Future[J]. Journal of Applied Soft Computing, 2008, 8(1): 191-201.
  • 9Castro L N, Timmis J. An Artificial Immune Network for Multimodal Function Optimization[C]//Proc. of the IEEE CEC'02. Honolulu, Hawaii, USA: [s. n.], 2002.
  • 10Attux R R F, Loiola M B, Suyama R, et al. Blind Search for Optimal wiener Solutions Using an Artificial Immune Network Model[C]//Proc. of the IEEE Int'l Conf. on Genetic and Evolutionary Computation for Signal Processing and Image Analysis. [S. l.]: IEEE Press, 2003.

共引文献3

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部