期刊文献+

聚焦型热声转换装置的特性

Characteristics of a Focusing-type Thermo-acoustic Transducer
下载PDF
导出
摘要 设计了一种新型的聚焦型热声转换装置,主要由加热层、绝缘层和储热层三层结构构成。当加热层输入交变电信号时,由于焦耳热效应及各层材料的热力学特性,其表面附近区域内气体压力产生交变的振荡,加热层的凹球表面会使产生的声波在某一区域聚焦。通过对装置进行数值模拟与实验研究,得出声波聚焦区域及聚焦点声压强度随声波频率的变化情况。装置可作为一种新型的声学聚焦换能装置,工作频率涉及可听及超声频域,无共振,无运动部件。这一研究具有一定的应用价值。 A new type of focusing thermo-acoustic transducer, which is composed of a heating surface, an insulation layer and a thermal storage substrate, was designed. When altemative voltage signal is input to the heating surface, due to the Joule heating effect and thermodynamic characteristic of material in each layer, the pressure of the air near the heating surface will oscillate, and the radiation sound will be focused in a small region by the concave spherically heating surface. Through numerical simulation and experimental study of the device, the variations of the focusing area and the sound pressure at the focusing point with acoustic frequency were given. The device can be used as a new type of acoustic-focusing and energy-exchanging device. It can radiate sound in the audible and ultrasonic regions without resonances and moving components. This study has a practical significance and an application prospect.
出处 《噪声与振动控制》 CSCD 2012年第2期185-189,共5页 Noise and Vibration Control
基金 教育部科学技术研究重点项目(基金编号:109073)
关键词 声学 热声装置 实验 聚焦特性 频率 acoustics thermoacoustic device experiment focusing characteristics frequency
  • 相关文献

参考文献12

  • 1F Braun. Ueder lichtenmission an einigen electroden in electrolyten[J].Ann der physic,1898.358.
  • 2H.D.Arnold,I.B.Crandall. The thermophone as a precision source of sound[J].Physical Review,1917,(01):22-38.
  • 3S Ballantine. Technique of microphone calibration[J].The Jouranl of the Acoustical Society of America,1932.319-360.
  • 4H.Shinoda,T.Nakajima,K.Ueno,N.Koshida. Thermally induced ultrasonic emission from porous silicon[J].Nature,1999.853-854.
  • 5Takashi Kihara,Toshihiro Harada,Jun Hirota,Nobuyoshi Koshida. Ulrrasound emission characteristics of a thermally induced sound emitter employing a nanocrystalline silicon layer[J].Japanese Journal of Applied Physics,2004,(5B):2973-2975.
  • 6A.O.Niskanen,J.Hassel,M.Tikander,P.Maijala,L.Gr(o)nberg P.Helist(o). Suspended metal wire array as a thermo-acoustic sound source[J].Applied Physics Letters,2009,(163102):1-3.
  • 7Rama Venkatasubramanian. Nanothermal trumpets[J].Nature,2010,(Feb.4 TN.7281):619.doi:10.1038/463619a.
  • 8吴宵军,董卫,陈艳,魏娴.一种新型电—热—声转换装置的特性研究[J].噪声与振动控制,2010,30(3):160-163. 被引量:5
  • 9R.R.Boullosa,A.O.Santillan. Sound radiation from thermal non-resonant source: planar and nonplanar geometries[J].Japanese Journal of Applied Physics,2006,(4A):2794-2800.
  • 10Kinsler L.E,Frey A.R,Coppens A.B,Sanders J V. Fundamentals of acoustics[M].New York:wiley,2000.175-176.

二级参考文献14

  • 1F.Braun.Ueder lichtenmission an einigen electroden in electrolyten[J].Ann der physic,1898,65:358.
  • 2Weinberg,Elektrot[J].Zeit,1907,28:944.
  • 3H.D.Arnold and I.B.Crandall.The thermophone as a precision source of sound[J].Phys.Rev,1917,10(1):22-38.
  • 4E.C.Wente.Electrostatic Transmitter[J].Phys.Rev,1922,19:333-45.
  • 5S.Ballantine.Technique of microphone calibration[J].J.Acoust.Soc.Am,1932,3:319-360.
  • 6H.Shinoda,T.Nakajima,K.Ueno and N.Koshida.Thermally induced ultrasonic emission from porous silicon[J].Nature,1999,400:853.
  • 7R.R.Boullosa,A.O.Santillan.Sound radiation from thermal non-resonant source:planar and nonplanar geometries[J].Jpn.J.Appl.Phys,2006,45(4A):2794-2800.
  • 8F.A.McDonald,G.C.Wetsel Jr.Generalized theory of the photoacoustie effect[J].Jpn.J.Appl.Phys,1978,49(4):2313-2322.
  • 9Akira Kiuchi,Nobuyoshi Koshida.New operating mode of nanocrystalhne silicon ultrasonic emitters for use as audio speakers[J].Jpn.J.Appl.Phys,2005,44(4B):2634-2636.
  • 10K.Tsubaki,T.Komoda and N.Koshida.Acoustic emission characteristics of nanocrystalline porous silicon device driven as an ultrasonic speaker[J].Jpn.J.Appl.Phys,2006,45(4B):3642-3644.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部