期刊文献+

睾酮对钙离子通道和心脏功能的影响 被引量:4

Effect of testosterone on calcium channels and cardiac function
下载PDF
导出
摘要 睾酮对人体的全身代谢、心脏的生理和病理均有着重要的影响。较高浓度的睾酮或其慢性作用可以提高T型、L型钙离子通道的密度,较低浓度或急性作用可以阻滞T型、L型钙离子通道,缩短男性Q-Tc间期,提高对胰岛素的敏感性及改善血脂代谢。睾酮可上调钙调节蛋白、β2受体的表达,在提高细胞内钙离子浓度的情况下,可增加钙瞬变的幅度,减少钙超载。一定浓度的睾酮可以维持血管的一定张力,改善心脏传导或扩张冠脉;减少胰岛素抵抗、代谢综合征的发生,改善心肌缺血、减少心肌细胞凋亡及纤维化,保护心脏,改善心脏收缩舒张效率。 Testosterone has important effects on human body metabolism, physiology and cardiac pathology. Higher concentrations of testosterone or its chronic effects can increase T- and L-type calcium channel density and lower concentrations or acute effects can block T- and L-type calcium channels, reduce male Q-Tc period and improve sensitivity to insulin and lipid metabolism. Testosterone can increase calcium regulatory proteins and expression of beta-2 receptor, enhance calcium transit rate and reduce calcium overload in case of increase of intracellular calcium concentration. Appropriate concentration of testoster- one can sustain a certain vascular tension, improve cardiac conduction or dilate coronary arteries, reduce insulin resistance and incidence of metabolic syndrome, improve myocardial ischemia, reduce apoptosis and myocardial cell fibrosis, protect the heart and enhance cardiac diastolic efficiency.
出处 《心脏杂志》 CAS 2012年第2期275-278,280,共5页 Chinese Heart Journal
基金 军队中医药科研专项课题项目资助(10zyz106)
关键词 睾酮 钙离子通道 心脏功能 testosterone calcium channels cardiac function
  • 相关文献

参考文献2

二级参考文献175

  • 1Gunter TE, Sheu SS. Characteristics and possible functions of mitochondrial Ca^2 + transport mechanisms [ J ]. Biochim Biophys Acta, 2009, 1787 ( 11 ) : 1291 - 1308.
  • 2Moreau B, Nelson C, Parekh AB. Biphasic regulation of mitochndrial Ca^2+ uptake by cytosolic Ca^2 + concentration[ J]. Curr Biol, 2006,16(16):1672-1677.
  • 3Moreau B, Parekh AB. Ca^2 + -dependent inactivation of the mitochondrial Ca^2 + uniporter involves proton flux through the ATP synthase[J].Curr Biol, 2008, 18( 11 ) :855 -859.
  • 4Altschafl BA, Beutner G, Shamia VK, et al. The mitoehondrial ryanodine receptor in rat heart: a pharmaeo-kinetie profile[ J ]. Biochim Biophys Acta, 2007, 1768(7) :1784 - 1795.
  • 5Dash RK, Beard DA. Analysis of cardiac mitochondrial Na ^+ -Ca^2 + exchanger kinetics with a biophysical model of mitochnndrial Ca^2+ handing suggests a 3 : 1 stoichiometry [ J ]. J Physiol, 2008, 586(13):3267 -3285.
  • 6Baines CP. The molecular composition of the mitochondrial permeability transition pore [ J ]..] Mol Cell Cardiol, 2009, 46 (6) :850 - 857.
  • 7Spta A, Szanda G, Csordas G, et al. High- and low-calcium- dependent mechanisms of mitochondrial calcium signalling[J].Cell Calcium, 2008, 44 ( 1 ) :51 - 63.
  • 8Gareia-P4rez C, Hajnoezky G, Csordas G. Physical eoupling supports the local Ca^2 + transfer between SR subdomains and the mitochondria in heal1 muscle [ J ].J Biol Chem. 2008, 283 (47) :32771 - 32780.
  • 9Castahto P, Cataldi M, Magi S, et al. Role of the mitochondrial sodium/calcium exchanger in neuronal physiology and in the pathogcnesis of neurological diseases [ J ]. Prog Neurobiol, 2009, 87 ( 1 ) :58 - 79.
  • 10Maack C, Cortassa S, Aon MA, et al. Elevated eytosolic Na ^+ ticcreases mitochondrial Ca2 + uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myoeytcs[ J ]. Circ Res, 2006, 99(2):172- 182.

共引文献8

同被引文献46

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部