摘要
研究了结构摄动系统满足指定性能的稳定裕度问题。从系统完全二次稳定性出发 ,给出了结构摄动系统满足 H∞ 性能指标的二次稳定半径定义 ,并且转化为基于线性矩阵不等式 (LMI)的极值问题进行计算。对于广义参数不确定性系统 ,基于 L MI给出了使二次稳定裕度尽可能大的 H∞ 控制器设计方法。该方法应用于某型双转子涡喷发动机稳态控制器的设计 。
The stability margin satisfied the performance for systems with structured perturbation was investligated.Based on the completely quadratic stability,a definition of the quadratic stability radius was given which satisfied the H ∞ performance target for the systems.And the calculation of radius was transformed to solve the extremum problem based on LMI.For generalized systems with parameter uncertainty,a approach was presented for a H ∞ controller design to make the quadratic stability radius as big as possible and used to design a steady static controller of a certain twin spools turbojet engine.The robust stability margin of system was extended.
出处
《推进技术》
EI
CAS
CSCD
北大核心
2000年第2期41-44,共4页
Journal of Propulsion Technology
基金
航空科学基金资助项目 !(960 530 4 0 )
关键词
LMI
结构摄动系统
涡喷发动机
二次稳定裕度
Aircraft engine
Control system
Robost control
Stability analysis
Matrix algorithm