摘要
Ba1-xSrxTiO3 ceramics, doped with B2O3-Li2O glasses have been fabricated via a traditional ceramic process at a low sintering temperature of 900 ℃ using liquid-phase sintering aids. The microstructures and di- electric properties of B2O3-Li2O glasses doped Ba1-xSrxTiO3 ceramics have been investigated systemat- ically. The temperature dependence dielectric constant and loss reveals that B2O3-Li2O glasses doped Ba1-xSrxTiO3 ceramics have di?usion phase transformation characteristics. For 5 wt% B2O3-Li2O glasses doped Ba0.55Sr0.45TiO3 composites, the tunability is 15.4% under a dc-applied electric field of 30 kV/cm at 10 kHz; the dielectric loss can be controlled about 0.0025; and the Q value is 286. These composite ceramics sintered at low temperature with suitable dielectric constant, low dielectric loss, relatively high tunability and high Q value are promising candidates for multilayer low-temperature co-fired ceramics (LTCC) and potential microwave tunable devices applications.
Ba1-xSrxTiO3 ceramics, doped with B2O3-Li2O glasses have been fabricated via a traditional ceramic process at a low sintering temperature of 900 ℃ using liquid-phase sintering aids. The microstructures and di- electric properties of B2O3-Li2O glasses doped Ba1-xSrxTiO3 ceramics have been investigated systemat- ically. The temperature dependence dielectric constant and loss reveals that B2O3-Li2O glasses doped Ba1-xSrxTiO3 ceramics have di?usion phase transformation characteristics. For 5 wt% B2O3-Li2O glasses doped Ba0.55Sr0.45TiO3 composites, the tunability is 15.4% under a dc-applied electric field of 30 kV/cm at 10 kHz; the dielectric loss can be controlled about 0.0025; and the Q value is 286. These composite ceramics sintered at low temperature with suitable dielectric constant, low dielectric loss, relatively high tunability and high Q value are promising candidates for multilayer low-temperature co-fired ceramics (LTCC) and potential microwave tunable devices applications.
基金
support from Functional Materials Research Laboratory, Tongji University, China
the Ministry of Sciences and Technology of China through 973-project under Grant No.2009CB623302
the National Natural Science Foundation of China under Grant No. 51175483
Program for the Outstanding Innovative Teams of High Learning Institutions of Shanxi