期刊文献+

一类二阶Hamilton系统周期解的存在性

Existence of periodic solutions for a class of second-order Hamiltonian systems
下载PDF
导出
摘要 研究了二阶Hamilton系统的周期解问题.在超二次条件下,利用山路定理得到了二阶Hamilton方程至少存在一个非平凡周期解的结论. Under the superquadratic condition,by using the mountain pass theorem,a new existence result of periodic solution for a class of the second-order Hamiltonian systems is obtained.
出处 《徐州师范大学学报(自然科学版)》 CAS 2012年第1期4-7,共4页 Journal of Xuzhou Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10871059)
关键词 山路定理 二阶HAMILTON系统 周期解 mountain pass theorem second-order Hamiltonian system periodic solution
  • 相关文献

参考文献14

  • 1Rabinowitz P H. Minimax methods in critical point theory with applications to dierential equations[A].Providence,RI:Amer Math Soc,1986.
  • 2Bartolo P,Benci V,Fortuuato D. Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity[J].Nonlinear Analysis-Theory Methods and Applications,1983,(03):241.doi:10.1097/DAD.0b013e3181b2ed67.
  • 3Fei Guihua. Nontrivial periodic solutions for asymptotically linear Hamiltonian systems[J].Electronic Journal of Differential Equations,2001.1.
  • 4Zhao Fukun,Wu Xian. Saddle point reduction method for some non-autonomous second order systems[J].Journal of Mathematical Analysis and Applications,2004,(02):653.doi:10.1016/j.jmaa.2003.11.019.
  • 5Tang Chunlei,Wu Xingping. Periodic solutions for second order systems with not uniformly coercive potential[J].Journal of Mathematical Analysis and Applications,2001,(02):386.doi:10.1006/jmaa.2000.7401.
  • 6Mawhin J,Willem M. Critical point theory and Hamiltonian systems[M].Beilin:Springer-Verlag,1989.
  • 7Long Yiming. Multiple solutions of perturbcd superquadratic second order Hamiltonian systems[J].Transactions of the American Mathematical Society,1989,(02):749.doi:10.1090/S0002-9947-1989-0978375-4.
  • 8Ekeland I,Ghoussoub N. Selected new aspects of the calculus variational in the large[J].Bulletin of the American Mathematical Society,2002,(02):207.doi:10.1090/S0273-0979-02-00929-1.
  • 9Izydorek M,Janczewska J. Homoclinic solutions for a class of the second order Hamiltonian systems[J].Journal of Differential Equations,2005,(02):375.doi:10.1016/j.jde.2005.06.029.
  • 10Ding Yanheng. Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems[J].Nonlinear Analysis-Theory Methods and Applications,1995,(11):1095.doi:10.1016/0362-546X(94)00229-B.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部