期刊文献+

两两NQD列部分和之和的弱大数定律

Weak law of large numbers for sum of partial sums of pairwise NQD sequences
下载PDF
导出
摘要 部分和之和在实际问题如随机游动、时间序列分析、破产理论中有着广泛的应用.研究同分布和不同分布情况下,两两NQD随机变量序列部分和之和Tn=(sum from i=1 to n)Si的弱大数定律,其中Sn=(sum from i=1 to n)Xi,将两两NQD随机变量序列部分和的弱大数定律推广到了部分和之和的情形. The sum of partial sums was extensively applied to mathematics and economics,such as random walk.In this paper,the weak law of large numbers for sum of partial sums of pairwise NQD sequences is discussed.Some results in the literature are improved and extended from the weak law of large numbers for partial sums of pairwise NQD sequences to that for the sum of partial sums case.
出处 《徐州师范大学学报(自然科学版)》 CAS 2012年第1期33-35,共3页 Journal of Xuzhou Normal University(Natural Science Edition)
关键词 两两NQD列 部分和之和 弱大数定律 pairwise NQD sequence sum of partial sums weak law of large numbers
  • 相关文献

参考文献11

二级参考文献38

  • 1陈平炎.两两NQD列的强大数定律[J].数学物理学报(A辑),2005,25(3):386-392. 被引量:22
  • 2董志山.两两NQD序列的Marcinkiewicz型强大数定律[J].吉林大学学报(理学版),2007,45(1):1-4. 被引量:1
  • 3苏淳,赵林城,王岳宝.NA序列的矩不等式与弱收敛[J].中国科学(A辑),1996,26(12):1091-1099. 被引量:88
  • 4Resnick S L. Limit laws for record values[J]. Stochastic Processes and Their Applications, 1973(1):67-82.
  • 5Arnold B C, Villasenor J A. The asymptotic distributions of sums of record[J]. Extremes, 1998(1):351-863.
  • 6Lehmann E I. Some concepts of dependence[J]. Ann Math Statist, 1966,43 (3) :1137-1153.
  • 7Matula P. A note on the almost sure eoncergence of sums of negatively dependent random variables[J]. Statistics & Probability Letters, 1992,15(3) :209-213.
  • 8Wittmann R. An application of Rosenthal's moment inequality to the strong law of large numbers[J]. Statistics & Probability Letters, 1985(3) : 131-133.
  • 9迟翔,苏淳.同分布NA序列的一个弱大数律[J].应用概率统计,1997,13(2):199-203. 被引量:20
  • 10[1]Matula P.A Note on the Almost Sure Convergence of Sums of Negatively Dependent Random Variables[J].Statist Prbab Lett,1992,15:209-213.

共引文献139

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部