期刊文献+

压缩感知重构匹配类算法分析 被引量:1

A survey of reconstruction algorithms based on matching in compressive sensing
下载PDF
导出
摘要 压缩感知理论是一种利用信号的稀疏性或可压缩性而把采样与压缩融为一体的新理论体系,它成功地克服了传统理论中采样数据量大、资源浪费严重等问题。该理论的研究方向主要包括信号的稀疏表示、测量矩阵的设计和信号的重构算法。其中信号的重构算法是该理论中的关键部分,也是近年来研究的热点。本文主要对匹配追踪类重构算法作了详细介绍,并通过仿真实验结果对这些算法进行了对比和分析。 The compressive sensing theory is a recent proposed theory, which can utilize the sparse and compressive characteristics of signals to combine the sampling and compression processes into only one procedure. It overcomes the shortcomings of large sampling data and significant waste of resource in traditional theories. The research areas in compressive sensing mainly include the sparse representation of signals, the design of measurement matrix, and signal reconstruction algorithms. The reconstruction algorithm is the key component of this new theory and is the focus of recent research. In this paper, the reconstruction algorithms, which use matching and tracking techniques, are described in details. Simulations of these algorithm are also conducted to compare and analyze these algorithms.
出处 《计算机时代》 2012年第4期15-17,20,共4页 Computer Era
基金 浙江省自然基金(Y1110510) 浙江省重中之重计算机学科开放基金项目(ZSDZZZZXK04)
关键词 压缩感知 稀疏信号 重构算法 匹配追踪类压缩感知算法 compressive sensing, sparse signal, reconstruction algorithm, compress sensing algorithms based on matching
  • 相关文献

参考文献12

  • 1Donoho D L. Compressed sensing[J].IEEE Transactions on Iformation Theory,2006,(04):1289-1306.doi:10.1109/TIT.2006.871582.
  • 2Candes E,Tao T. Decoding by linear programming[J].IEEE Transactions on Information theory,2005,(12):4203-4215.doi:10.1109/TIT.2005.858979.
  • 3Candes E,Romberg J,Tao T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information theory,2006,(02):489-509.doi:10.1109/TIT.2005.862083.
  • 4Candes E,Tao T. Tear-optimal signal recovery from random projections:Universal encodirng strategies[J].lEEE Transactions on Information Theory,2006,(12):5406-5425.
  • 5姚远,刘鹏,王辉,笱程成.基于稀疏矩阵存储的状态表压缩算法[J].计算机应用,2010,30(8):2157-2160. 被引量:5
  • 6Tropp J A,Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Transactions on Information theory,2007,(12):4655-4666.doi:10.1109/TIT.2007.909108.
  • 7Needell D,Vershynin R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit[J].Foundations of Computational Mathematics,2009,(03):317-334.doi:10.1007/s10208-008-9031-3.
  • 8Dai W,Mllenkovic O. Subspace pursuit for compressive sensing signal reconstruction[J].IEEE Transactions on Information theory,2009,(05):2230-2249.
  • 9Needell D,Tropp J A. CoSaMP:Iterative signal recovery from incomplete and inaccurate samples[J].Applied and Computational Harmonic Analysis,2009,(03):301-321.doi:10.1016/j.acha.2008.07.002.
  • 10S S Chen,D L Donoho,M A Saunders. Atomic decomposition by basis pursuit[J].SIAM Journal on Scientific Computing,1998,(01):33-61.

二级参考文献12

  • 1BECCHI M,CROWLEY P.Extending finite automata to efficiently match perl-compatible regular expressions[C] // Proceedings of the 2008 ACM CoNEXT Conference.New York:ACM,2008:25.
  • 2Introduction to snort[EB/OL].[2008-02-27].http://www.snort.org/docs.
  • 3Bro intrusion detection system[EB/OL].[2009-02-24].http://www.bro-ids.org.
  • 4Tippingpoint intrusion prevention systems[EB/OL].[2009 -05-28].http://www.tippingpoint.com.
  • 5Cisco IOS IPS signature deployment guide[EB/OL].[2009 -07-12].http://www.cisco.com.
  • 6BECCHI M,CROWLEY P.An improved algorithm to accelerate regular expression evaluation[C] // Proceedings of the 3rd ACM/IEEE Symposium on Architecture for Networking and Communications Systems.New York:ACM,2007,:145 -154.
  • 7KONG S J,SMITH R,ESTAN C.Efficient signature matching with multiple alphabet compression tables[EB/OL].[2009-12-12].http://pages.cs.wise.edu/ ~ estan/publications/multipleACTs.html.
  • 8FICARA D,GIORDANO S,PROCISSI G,et al.An improved dfa for fast regular expression matching[J].ACM SIGCOMM Computer Communication Review,2008,38(5):29 -40.
  • 9KUMAR S,DHARMAPURIKAR S,YU F,et al.Algorithms to accelerate multiple regular expressions matching for deep packet inspection[C] // Proceedings of the 2006 Conference on Applications,Technologies,Architectures,and Protocols for Computer Communications.Washington,DC:IEEE,2006:339 -350.
  • 10Application layer packet classifier for Iinux[EB/OL].[2009-01-7].http://17-filter.sourceforge.net/.

共引文献4

同被引文献10

  • 1Candes E,Romberg J,Tao T.Robust uncertainty principles.Exact signal reconstruction from highly incomplete frequency information.IEEE Trans Information Theory,2006,52(4);489-509.
  • 2Candes E,Romberg J,Tao T.Stable signal recovery from incomplete and inaccurate measurements.Communications on Pure and Applied Mathematics,2006,59(8):1207-1223.
  • 3Candes E,Romberg 1.Quantitative robust uncertainty principles and optimally sparse decompositions.Foundations of Compute Math,2006,6(2):227-254.
  • 4Candes E,Tao T.Near optimal signal recovery from random projections:Universal encoding strategies.IEEE Transactions on Information Theory,2006,52(12):5410-5415.
  • 5Wainwright M.Information-theoretic bounds on sparsity recovery in the high-dimensional and noisy setting.In:Proceedings of the IEEE International Symposium on Information Theory,2007.961-965.
  • 6Kremer I,Nisan N,Ron D.On randomized one-round communication complexity.Computational Complexity,1999,8(1):21-49.
  • 7Kane D,Nelson J,Woodruff D.On the exact space complexity of sketching and streaming small norms.In:SODA '10 Proceedings of the Twenty-First Annual ACM-SI-AM Symposium on Discrete Algorithms,PA,USA,2010.1161-1178.
  • 8Strohmer,Thomas.Measure what should be measured:progress and challenges in Compressive Sensing.IEEE Signal Processing Letters,2012,19(12):887-893.
  • 9Piotr I,Eric P.Lower bounds for sparse recovery.In:Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms.PA,USA,2010.1190-1197.
  • 10Chen S S,Donoho D L,Saunders M A.Atomic decomposition by basis pursuit.SIAM Journal of Scientific Computing,1998,20(1):33-61.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部