期刊文献+

基于MKL-SVM的网络购物评论分类方法 被引量:1

A classification method of online reviews based on MKL-SVM
下载PDF
导出
摘要 购物网站在线评论系统收集了大量的顾客评价。支持向量机(SVM)是一种有效的文本分类方法,可以用于跟踪和管理顾客意见,但是SVM存在训练收敛速度慢,分类精度难以提高等缺点。文章提出利用异质核函数性的不同特性,解决支持向量机(SVM)数据泛化学习能力弱的问题,提高SVM的分类精度,通过对顾客购物评论进行分类,解决购物网站海量顾客评论分析的问题,帮助企业及时进行顾客反馈,提升服务水平。 An online shopping website accumulates a large number of customer reviews for goods and enterprise services. Support Vector Machine (SVM) is an efficient classification method and can be used to track and manage customer reviews. But SVM has some weaknesses, for example, its slow speed of training convergence and uneasy raise of classification accuracy. The author presents the use of heterogeneous nuclear function of different characteristics, which may resolve SVM's problem of weak generalization ability to learn and improve SVM classification accuracy. Through classification of online customer reviews, shopping sites may resolve the issues of critical analysis of mass data, and effectively help enterprises to improve service levels.
作者 胡瀚
出处 《计算机时代》 2012年第4期43-45,共3页 Computer Era
关键词 网络购物评论 文本分类 SVM 多核学习 customer review text classification SVM multiple kernel learning
  • 相关文献

参考文献9

  • 1苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:387
  • 2F.R.Bach,G.R.G.Lanckriet,M.I.Jordan. Multiple kernel learning,conic duality,and the SMO algorithm[A].2004.6-14.
  • 3S.Sonnenburg,G.Ratsch,C.Schafer. Large scale multiple kernel learning[J].Machine Learning Research,2006,(12):1531-1565.
  • 4Koji Tsuda,Gunnar Ratsch. learning to predict the leave one out error of kernel based classifiers[J].Process International Conference Artificial Neural Networks,2001,(03):331-338.
  • 5Smits,G.F,Jordaan,E.M. Improved SVM regression using mixtures of kernels Neural Networks[A].2002.2785-2790.
  • 6A.Rakotomamonjy,F.Bach,S.Canu,Y.Grandvalet. More efficiency in multiple-kernel learning[A].Corvallis,2007.775-782.
  • 7Mingqing Hu,Yiqiang Chen,James Tin-Yau Kwok. Building Sparse Multiple-Kernel SVM Classifiers[J].IEEE Transactions on Neural Networks,2009,(05):1-12.
  • 8刘向东,骆斌,陈兆乾.支持向量机最优模型选择的研究[J].计算机研究与发展,2005,42(4):576-581. 被引量:49
  • 9N.Cristianini,J.Shawe-Taylor,J.Kandola. On kernel target alignment[A].2002.367-373.

二级参考文献11

  • 1王建会,王洪伟,申展,胡运发.一种实用高效的文本分类算法[J].计算机研究与发展,2005,42(1):85-93. 被引量:20
  • 2李荣陆,王建会,陈晓云,陶晓鹏,胡运发.使用最大熵模型进行中文文本分类[J].计算机研究与发展,2005,42(1):94-101. 被引量:96
  • 3V.N. Vapnik. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
  • 4V. Cherkassky, F. Mulier. Learning from Data: Concept,Theory and Method. NY: John Viley & Sons, 1997.
  • 5O. Chapelle, V. M. Vapnik. Model selection for support vector machines. In: Proc. the 12th Conf. Neural Information Processing Systems. Cambridge, MA: MIT Press, 1999.
  • 6O. Chapelle, V. N. Vapnik, O. Bousquet, et al. Choosing multiple parameters for support vector machines. Machine Learning, 2002, 46(1): 131~159.
  • 7N. Cristianini, J. Shawe-Taylor, J. Kandola, et al. On kernel target alignment. In: Proc. Neural Information Processing Systems. Cambridge, MA: MIT Press, 2002. 367~373.
  • 8K. Tsuda, G. Ratsch, S. Mika, et al. Learning to predict the leave-one-out error of kernel based classifiers. In: Proc. 2001Int'l Conf. Artificial Neural Networks-ICANN 2001. Berlin:Springer-Verlag, 2001.
  • 9田盛丰,黄厚宽.基于支持向量机的数据库学习算法[J].计算机研究与发展,2000,37(1):17-22. 被引量:53
  • 10刘学军,陈松灿,彭宏京.基于支持向量机的计算机键盘用户身份验真[J].计算机研究与发展,2002,39(9):1082-1086. 被引量:26

共引文献434

同被引文献14

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部