期刊文献+

自适应退火遗传算法的起重机箱形梁优化 被引量:4

Crane box girder optimization based on self-adaptive annealing genetic algorithm
下载PDF
导出
摘要 为克服标准遗传算法的固有缺陷——停滞和早熟现象,将具有较强局部收索能力的模拟退火算法融入其中,对适应函数进行退火拉伸,对接受算子进行退火处理,同时加入自适应机制来改进标准遗传算法的杂交率和变异率,尤其对变异率的调整,使其既能根据个体适应值的大小进行自适应修正,也能随进化状态的改变而改变,从而增强了算法摆脱局部最优解的能力。以最终形成了自适应退火遗传算法进行起重机主梁优化。经实例验证:与原标准遗传算法相比,在保证收敛结果不变的情况下,收敛速度和全局收敛性都得到了较大提高。 To overcome the inherent defects of stagnation and premature convergence in standard genetic algorithm, the simulated annealing algorithm with strong local search capability is integrated into the algorithm,annealing stretching is applied to fitness function,annealing treatment is adopted for acceptation operator,and meantime,self-adaption mechanism is added to improve crossover rate and mutation rate of standard genetic algorithm.Especially adjustment of mutation rate can change the mutation rate automatically according to size of individual fitness and different evolutionary status so as to strengthen algorithm's ability to break away from local optimum solution.In the end,self-adaption annealing genetic algorithm is formed for crane main girder optimization.Verification by example and comparison with the standard genetic algorithm shows that both convergence rate and global convergence of the new algorithm improve a lot under the premise of better convergence results.
出处 《起重运输机械》 2012年第4期22-27,共6页 Hoisting and Conveying Machinery
关键词 起重机 箱形梁 自适应退火遗传算法 优化设计 全局收敛性 crane box girder self-adaption annealing genetic algorithm optimal design global convergence
  • 相关文献

参考文献3

二级参考文献17

  • 1范小宁,林焰,纪卓尚.船舶管路三维布局优化的变长度编码遗传算法[J].中国造船,2007,48(1):82-90. 被引量:31
  • 2陈国良,遗传算法及其应用,1996年
  • 3王小平 曹立明.遗传算法--理论、应用与软件实现[M].西安:西安交通大学出版社,2003..
  • 4SCHMIDT-TRAUB H,KOSTER M,HOLTKOTTER T,et al.Conceptual plant layout[J].Comput Chem Eng,1998,22(Suppl.):499-504
  • 5BURDORF A,KAMPCZYK B,LEDERHOSE M,et al.CAPD*/computer-aided plant design[J].Comput Chem Eng,2004,28:73-81
  • 6KNIAT A.Optimization of three-dimensional pipe routing[J].Schiffstechnik (Ship Technology Research),2000,47:111-114
  • 7ITO T.A genetic algorithm approach to piping route path planning[J].J of Intell Manuf,1999,10:103-114
  • 8SANDURKAR S,CHEN W.GARPUS-genetic algorithms based pipe routing using tessellated objects[J].Comput in Ind,1999,38:209-223
  • 9PARK J H,STORCH R L.Pipe-routing algorithm development:case study of a ship engine room design[J].Expert Syst with Appl,2002,23:299-309
  • 10KANG S,MYUNG S,HAN S.A design expert system for auto routing of ship pipes[J].J of Ship Prod,1999,15(1):1-9

共引文献22

同被引文献30

  • 1陈小全,张继红.基于改进粒子群算法的聚类算法[J].计算机研究与发展,2012,49(S1):287-291. 被引量:31
  • 2周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:209
  • 3郭仁生.机械工程设计分析和MATLAB应用[M].北京:机械工业出版社.2011.
  • 4DE BONET J S,ISBELL C L, VIOLA P. MIMIC:Finding optimating probability densities. Advances in Neural Information Pro- cessing Systems, Cambridge : MIT Press, 1997.9:424-430.
  • 5HARIK G R. Learning gene linkage to efficiently solve problems of bounded difficulty using genetic algorithms [ D ]. Ann Arbor, University of Michigan, 1997 : 165-173.
  • 6孙靖民,梁迎春.机械优化设计[M].第4版.北京:机械工业出版社,2009:144-151.
  • 7SANDGREN E. Nonlinear and discrete programming in mechanical design [ C ]//Proceeding of the ASME Design Technology Conference. Kissimine, FL: ASME, 1990,112:223-229.
  • 8KANNAN B K, KRAMER S N. An augmented lagrange multiplier based method for mixed integer discrete continuous optimiza- tion and its applications to mechanical design[ J]. Journal of Mechanical Design,Trans. ASME, 1994,116:318-320.
  • 9CARLOS A. Use of self-adaptive penalty approach for engineering optimization problems[ J ]. Computer in Industry,2000,41 : 113-127.
  • 10贾欣鑫,罗亮,郭丽峰,何尚录.求解复杂背包问题的一种贪婪算法[J].重庆工学院学报(自然科学版),2008,22(9):71-74. 被引量:2

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部