期刊文献+

基于生物视觉通路的目标识别算法 被引量:1

Object recognition algorithm based on biological visual pathway
下载PDF
导出
摘要 研究哺乳动物视觉通路的结构和功能,为机器学习提供了广泛的思路。文章对经典稀疏编码和HMAX模型进行改进,建立一种模拟完整视觉通路的算法。用4DGabor金字塔模拟了视觉信息从视网膜到腹侧通路V1区的处理过程;设计一种带稀疏编码性质的非线性滤波器,模拟了信息在V1区到PFC区的多层次处理步骤。实验表明该算法能够符合已知生物模型,达到现有同类先进算法的效果。 . The research on the anatomical and functional connectivity of visual pathway affords a broad way of machine learning. An algorithm to simulate the whole visual pathway is presented based on the improved clas- sic SC and HMAX models. This process can be broken down into two steps: the first is a coding step, which utilizes 4D Gabor pyramid to simulate visual information processing from the retina to the ventral pathway V1 area, and the second is a pooling step, which utilizes a sparse nonlinear filter to simulate multi-level visual in- formation processing from V1 area to PFC area. The experimental results show that this approach tallies with the living model and achieves the result of the state-of-the-art model.
作者 宋皓 徐小红
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第4期481-484,共4页 Journal of Hefei University of Technology:Natural Science
关键词 皮层 HMAX模型 目标识别 cortex HMAX model object recognition
  • 相关文献

参考文献8

  • 1Zhuo Y,Zhou T G,Rao H Y. Contributions of the visual ventral pathway to long-range apparent motion[J].Science,2003.417-420.doi:10.1126/science.1077091.
  • 2Felzenszwalb P,Mcallester D,Ramanan D. A discriminatively trained,multiscale,deformable part model[J].CVPR,2008.122-125.
  • 3Hubel D H. Single unit activity in lateral geniculate body and optic tract of unrestrained cats[J].Hysiol,1960.91-104.
  • 4Hayashi I,Maeda H,Oillianmson J R. A formulation of receptive field type input layer for TAM network using Gabor function[M].Budapest,Hungary,2004.25-29.
  • 5Serre T,Wolf T. Robust object recognition with cortex like mechanisms[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,(3):411-426.doi:10.1109/TPAMI.2007.56.
  • 6Lazebnik S,Schmid C,Ponce J. Beyond bags of features:Spatial pyramid matching for recognizing natural scene categories[J].CVPR,2006.211-223.
  • 7LeCun Y,Bottou L,Bengio Y. Gradientbased learning applied to document recognition[J].Proceedings of the IEEE,1998,(11):2278-2324.doi:10.1109/5.726791.
  • 8华德梅,叶震.一个基于改进遗传算法的RBF网络入侵检测模型[J].合肥工业大学学报(自然科学版),2010,33(3):368-371. 被引量:9

二级参考文献8

  • 1Forrest S, Hofmerry S A, Somayaji A. Computer immunology[J]. Communications of the ACM,1997,40(10):88-96.
  • 2Bivens A,Palagiri C, Smith R, et al. Network-based intrusion detection using neural networks[C]//Proc Intelligent Engineering Systems Through Artificial Neural Networks ANIVIE-2002, St. Louis, MO, Vol 12. NewYork: ASME Press, 2002 : 579-584.
  • 3Bolanos R F, Cadena C A, Nino F. Detection of denial of service attacks using neural networks [C]//Proc of 6 th World Multiconference on Systemics, Cybernetics and Informatics, 2002.
  • 4Brugger S T. Data mining methods for network intrusion detection [EB/OL]. http://www-static. cc. gatech. edu/-guofei/reading/brugger_dmnid.pdf, 2009-01-04.
  • 5Lee W,Stolfo S J,Mok K W. A data mining framework for building intrusion detection models [C]//Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland: IEEE, 1999 : 120-132.
  • 6Han J W Kamber M 范明 孟小峰译.数据挖掘概念与技术[M].北京:机械工业出版杜,2001.147-158.
  • 7阮晓钢.神经计算科学[M].北京:国防工业出版社,2006.
  • 8李红利,张晓彤,兰立柱,孙兆林.基于遗传算法的RBF神经网络的优化设计方法[J].计算机仿真,2003,20(11):67-69. 被引量:55

共引文献8

同被引文献11

  • 1Koch C, Ullman S. Shifts in selective visual attention; to- wards the underlying neural circuitry[J]. Human Neurobi- ology, 1985,4 (4) : 219- 227.
  • 2Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20 ( 11 ) : 1254-1259.
  • 3Achanta R, Hemami S, Estrada F, et al. Frequency-tuned salient region detection[C]//IEEE Conference on Comput- er Vision and Pattern Recognition, 2009:1597-1604.
  • 4Harel J, Koch C, Perona P. Graph-based visual saliency [C]//Proceedings of the Twentieth Annual Conference on Neural Information Processing System, 2006 : 545- 552.
  • 5Zhai Y, Shah M. Visual attention detection in video se- quences using spatiotemporal cues[C]//Proceedings of the 14th ACM International Conference on Multimedia, 2006: 815-824.
  • 6Cheng M M, Zhang G X, Mitra N J, et al. Global contrast based salient region detection [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2011 : 409- 416.
  • 7King-Smith P E, Grisby S S, Vingrys A J, et al. Efficient and unbiased modifications of the QUEST threshold method: theory, simulations, experimental evaluation and practical implementation [J]. Vision Research, 1994, 34 ( 7 ): 885-912.
  • 8Derrington A M, Krauskopf J, Lennie P. Chromatic mecha- nisms in lateral geniculate nucleus of macaque[J]. Joumal of Physiology, 1984,357 ( 1 ) : 241- 265.
  • 9Hou X, Zhang L. Saliency detect ion:a spectral residual ap- proach[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2007 : 1- 8.
  • 10Goferman S, Zelnik-Manor L, Tal A. Context-aware sali- ency detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34(10) : 1915-1926.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部