期刊文献+

高维数据的特征选择研究

Some Studies on Feature Selection for High Dimensional Data
下载PDF
导出
摘要 特征选择是机器学习的重要研究内容之一.相对于低维数据的特征选择而言,高维数据的特征选择更具挑战性,尤其是高维小样本的特征选择问题,因而吸引很多研究者的关注.高维特征选择问题称为稀疏建模问题,其目标是解决现有特征建模方法在高维特征空间失效的问题.本文对高维数据的特征选择研究成果进行了相应的总结和展望. Feature selection is a key issue in machine learning field.As compared with feature selection for low dimensional data,feature selection for high dimensional data is a challenging task,especially feature selection issue for high dimensional small size data,so many researcher focus on this problem.In essence,the feature selection problem for high dimensional data is regarded as a sparse modeling issue,whose target is to solve the failure problem of the existing feature modeling methods on high dimensional feature space.Therefore,in this paper,we give a survey of the feature selection methods for high dimensional data,and meanwhile propose some discussions on future work.Our main objective is to provide a reference for readers who are interesting in this research field.
作者 杨杨 吕静
出处 《南京师范大学学报(工程技术版)》 CAS 2012年第1期57-63,共7页 Journal of Nanjing Normal University(Engineering and Technology Edition)
基金 南京师范大学2010年学生科学基金(首批立项)
关键词 高维数据 降维 特征选择 high dimension data dimensionality reduction feature selection
  • 相关文献

参考文献29

  • 1Fukunaga K.Introduction of Statistical Pattern Recognition[M].2nd ed.Waltham:Academic Press,1991.
  • 2黄睿,何明一,杨少军.一种适用于小样本问题的基于边界的特征提取算法[J].计算机学报,2007,30(7):1173-1178. 被引量:6
  • 3He X F,Niyogi P.Locality preserving projections[C]//Vancouver,Whistler,Eds.Advances in Neural Information Process-ing Systems.Cambridge:MIT Press,2003.
  • 4Cai D,He X H,Han J W.Semi-supervised discriminant analysis[C]//Eleventh IEEE International Conference on Computer Vision.Brazil:Rio de Janeiro,2007.
  • 5Liu H,Motoda H.Feature Selection for Knowledge Discovery and Data Mining[M].Boston:Kluwer,1998.
  • 6毛勇,周晓波,夏铮,尹征,孙优贤.特征选择算法研究综述[J].模式识别与人工智能,2007,20(2):211-218. 被引量:95
  • 7Yu L,Liu H.Feature selection for high-dimensional data:a fast correlation-based filter solution[C]//Proceedings of the20th International Conferences on Machine Learning.Washington,DC,2003:856-863.
  • 8Pudil P,Novovicova J,Kittler J.Floating search methods in feature selection[J].Pattern Recognition Letters,1994,15:1 119-1125.
  • 9Liu Y,Zheng Y F.FS-SFS:A novel feature selection method for support vector machines[J].Pattern Recognition,2006,39:1333-1345.
  • 10Zhou X,Mao K Z,Wu X Y,et al.Fast gene selection for microarray data using SVM-Based evaluation criterion[C]//IEEE International Conference on Bioinformatics and Biomedicine.IEEE Computer Society,2008:386-389.

二级参考文献211

共引文献166

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部