摘要
The effects of cold deformation on the formation of strain induced α’ martensite and mechanical properties of an austenitic stainless steel have been examined.X-ray diffraction analysis has revealed that 30% and 40% cold rolling have resulted in the formation of 24% and 31.5% martensite respectively.Microstructural investigation has demonstrated that the formation of martensite is enhanced with increase in the percent deformation at 0 ℃.Investigation of mechanical properties reveals that hardness,yield strength and tensile strength values increase where as percent elongation drops with increasing deformation.The fractographic observation corroborates the tensile results.Examination of sub-surface at the fractured end of the tensile sample manifests that void/microcrack nucleation occurs in the interfacial regions of the martensite phase as well as at the austenite-martensite interface
The effects of cold deformation on the formation of strain induced α’ martensite and mechanical properties of an austenitic stainless steel have been examined.X-ray diffraction analysis has revealed that 30% and 40% cold rolling have resulted in the formation of 24% and 31.5% martensite respectively.Microstructural investigation has demonstrated that the formation of martensite is enhanced with increase in the percent deformation at 0 ℃.Investigation of mechanical properties reveals that hardness,yield strength and tensile strength values increase where as percent elongation drops with increasing deformation.The fractographic observation corroborates the tensile results.Examination of sub-surface at the fractured end of the tensile sample manifests that void/microcrack nucleation occurs in the interfacial regions of the martensite phase as well as at the austenite-martensite interface