期刊文献+

On Triply Periodic Wave Solutions for(2+1)-Dimensional Boussinesq Equation 被引量:1

On Triply Periodic Wave Solutions for(2+1)-Dimensional Boussinesq Equation
原文传递
导出
摘要 By employing Hirota bilinear method and Riemann theta functions of genus one,explicit triply periodic wave solutions for the(2+1)-dimensional Boussinesq equation are constructed under the Backlund transformation u =(1 /6)(u0 1) + 2[ln f(x,y,t)] xx,four kinds of triply periodic wave solutions are derived,and their long wave limit are discussed.The properties of one of the solutions are shown in Fig.1.
作者 王军民
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第4期563-567,共5页 理论物理通讯(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No. 11101382 the Natural Science Foundation of Henan Province under Grant No. 2010A110001 the Basic and Advanced Technology Project of Henan Province under Grant No. 112300410199
关键词 Hirota bilinear method theta functions periodic wave solutions (2+1)-dimensional Boussinesq equation Boussinesq方程 周期波解 Backlund变换 双线性方法 行波解 黎曼 极限
  • 相关文献

参考文献33

  • 1M.J. Abolowitz and P.A. Clarkson, Solitons, NonlinearEvolution Equations and Inverse Scatting, CambridgeUniversity Press, London (1991).
  • 2L. Ju, V.B. Matveev and M.A. Salle, Darboux Transformationsand Solitons, Springer, Berlin (1991).
  • 3C.H. Gu, H.S. Hu, and Z.X. Zhou, Darboux Transformationin Soliton Theory and its Geometric Applications,Science and Technology Press, Shanghai (1999).
  • 4R. Hirota, The Direct Method in Soliton Theory, Cam-bridge University Press, Cambridge (2004).
  • 5D.P. Novikov, Siberian Mathematical Journal 40 (1999)159.
  • 6J.M. Wang and X.G. Geng, Phys. Lett. A 319 (2003) 73.
  • 7C.W. Cao, Y.T. Wu, and X.G. Geng, J. Math. Phys. 40(1999) 3948.
  • 8R.G. Zhou, Nuovo Cimento B 117(2002) 925.
  • 9J.M. Wang, Chin. Phys. Lett. 28 (2011) 030202.
  • 10J.M. Wang and X. Yang, Chin. Phys. Lett. 28 (2011)090202.

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部