期刊文献+

人脸显性特征的融合构造方法及识别 被引量:5

Face Recognition Based on Explicit Facial Features by Fusion Construction Method
下载PDF
导出
摘要 目前的人脸识别研究中,面部几何特征没有得到很好的利用.本文阐述了几何特征对于人脸识别的重要性,在此基础上提出了一种提取面部几何特征的新方法;通过融合几何信息和纹理信息构造出一种面部显性特征,并给出了相应的人脸识别方法.这种新的人脸识别方法相对于基于统计学习的子空间方法具有一定的优势,同时也可作为后者的有益补充.实验表明,本文提出的人脸表示特征及识别方法对人脸表情变化和环境光照变化均有一定的鲁棒性. In the current research on face recognition,facial geometric features have not been fully utilized.Thus,the importance of geometric features in face recognition is explicated,and a novel technique of facial geometric feature extraction is proposed.Then a facial explicit feature is constructed based on the fusion of geometric and texture information.The corresponding face recognition method using these features is also given.This novel face recognition method not only possesses some advantages over the popular subspace methods based on statistical learning,but can be a complement to the latter.Experiments demonstrate that the extracted features and the corresponding face recognition algorithm are robust to facial expression and environmental illumination variations.
作者 杨飞 苏剑波
出处 《电子学报》 EI CAS CSCD 北大核心 2012年第3期466-471,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60935001) "水力机械过渡过程"教育部重点实验室开放研究基金
关键词 人脸识别 显性特征 几何特征 豪斯多夫距离 face recognition explicit feature geometric feature Hausdorff distance
  • 相关文献

参考文献15

  • 1Bruce V,Hanna E,Dench N,Healey P,Burton M.The impor-tance of“mass”in line drawings of faces[J].Applied Cogn-itive Psychology,1992,6(7):619-628.
  • 2Tjan B S,Braje WL,Legge G E,Kersten D.Human efficiencyfor recognizing 3-D objects in luminance noise[J].Vision Re-search,1995,35(21):3053-3069.
  • 3Bledsoe W W.The Model Method in Facial Recognition[R].Palo Alto,California,USA:Panoramic Research Inc,1966.
  • 4Kaufman G J,Breeding K J.The automatic recognition of hu-man faces from profile silhouettes[J].IEEE Transactions onSystems,Man,and Cybernetics,1976,6(2):113-121.
  • 5Brunelli R,Poggio T.Face recognition through geometrical fea-tures[J].Lecture Notes in Computer Science,1992,588:792-800.
  • 6Belhumeur P N,Hespanha J P,Kriegman D J.Eigenfaces vs.Fisherfaces:recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Inte-lligence,1997,19(7):711-720.
  • 7He X,Yan S,Hu Y X,Niyogi P,Zhang H J.Face recognitionusing Laplacianfaces[J].IEEE Transactions on Pattern Analysisand Machine Intelligence,2005,27(3):328-340.
  • 8王守觉,曲延锋,李卫军,覃鸿.基于仿生模式识别与传统模式识别的人脸识别效果比较研究[J].电子学报,2004,32(7):1057-1061. 被引量:46
  • 9Delgado-Gomez D,Fagertun J,Ersbφll B,Sukno F M,Frangi AF.Similarity-based Fisherfaces[J].Pattern Recognition Letters,2009,30(12):1110-1116.
  • 10Chen T,Yin W T,ZhouX S,ComaniciuD,Huang T S.Totalvariation models for variable lighting face recognition[J].IEEE Transactions on Pattern Analysis and Machine Intell-igence,2006,28(9):1519-1524.

二级参考文献19

  • 1张辉,周洪祥,何振亚.基于主元分析神经网络的人脸特征提取及识别研究[J].模式识别与人工智能,1996,9(1):52-58. 被引量:10
  • 2W Bledsoe.Man-machine facial recognition[A].Panoramic Research Inc,Palo Alto,CA,1966,Rep PRI:22.
  • 3R Bruneli,T Poggio.Face recognition:features versus templates[J].IEEE Trans.Pattern Analysis and Machine Intelligence,1993,15:1042-1052.
  • 4M Turk,A Pentland.Face recognition using eigenfaces[A].Proc of IEEE Conf On CVPR[C].1991.586-591.
  • 5Yongsheng Gao.Face recognition using line edge map[J].IEEE Trans Pattern Analysis and Machine Intelligence,June 2002,24(6):764-779.
  • 6Shang-Huang Lin,Sun-Yuan Kung,Long-Ji Lin.Face recognition/detection by probabilistic decision-based neural network[J].IEEE Trans On neural networks,Jan.1997,8(1):114-132.
  • 7N Intrator,D Reisfeld,Y Yeshurun.Extraction of facial features for recognition using neural networks[A].Proceedings of International Workshop on Automatic Face and Gesture Recognition[C].1995.260-265.
  • 8P J Phillips.Support vector machines applied to face recognition[A].In Advances in Neural Information Processing Systems 11[C].USA:MIT Press,1998.803-809.
  • 9G D Guo,S Z Li,K L Chan.Face recognition by support vector machines[J].Image and Vision Computing,2001,19(9-10):631-638.
  • 10Peter N Belhumeur,Joo Hespanha,David J Kriegman.Eigenfaces vs.fisherfaces:recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.

共引文献45

同被引文献31

引证文献5

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部