期刊文献+

基于对立学习的PSO算法研究

A Research into PSO Algorithm Based on Stochastic Opposition Learning
下载PDF
导出
摘要 为进一步提高PSO算法的优化效率,加速寻优过程,提出基于随机对立策略的PSO算法,包括QOP-SO和QRPSO。这两种算法在种群初始化阶段采用随机对立学习方法,并在进化过程中用随机对立学习进行种群动态跳跃,以提高产生解的质量。利用6个测试函数对算法的效率进行检验,将其与标准PSO和OPSO算法进行对比,结果表明,新算法具有更快的收敛速度和更高的求解精度。 In order to improve the performance of Particle Swarm Optimization(PSO) and accelerate the convergence speed,two improved PSOs named as QOPSO and QRPSO are proposed based on stochastic opposition.The two different kinds of stochastic opposition learning are employed in population initialization and generation jumping,which can improve the quality of solutions.Simulation results on six benchmark functions show that the two proposed algorithms are superior to the SPSO and the OPSO.
出处 《广西师范学院学报(自然科学版)》 2012年第1期61-65,共5页 Journal of Guangxi Teachers Education University(Natural Science Edition)
基金 国家自然科学基金资助项目(40871250) 广西教育厅科研基金资助项目(201106LX310)
关键词 对立学习 粒子群优化 优化 stochastic opposition Particle Swarm Optimization optimization
  • 相关文献

参考文献9

  • 1KENNEDY ENNEDYJ,EBERHART R C.Particle Swarm Opti mization[C].in Proc.of the IEEEInt.Conf.on Neu-ral Networks.Piscataway,NJ:IEEE Service Center,1995:1942-1948.
  • 2WANG H,LI U Y,ZENG S,et al.Opposition-based particle swarmalgorithm with cauchy mutation[C].in IEEE Con-gress on Evolutionary Computation,Singapore,2007:4750-4756.
  • 3TIZHOOSHH.Opposition-basedlearning:Anewscheme for machine intelligence[J].in Proceedings of International Con-ference on Computational Intelligence for Modelling Control and Automation,2005(1):695-701.
  • 4RAHNAMAYAN S,TIZHOOSH H R,SALAMA M M A.Quasi oppositional differential evolution[C].in Proc.IEEECongress on Evolutionary Computation CEC 2007:2229-2236.
  • 5SI MON.Biogeography-based opti mization[J].IEEE Trans.on Evolutionary Computation,2008,12(6):702-713.
  • 6RAHNAMAYAN H,TIZHOOSHSALAMA M.Opposition-based differential evolution[J].IEEE Transactions on Evolu-tionary Computation,2008,12(1):64-79.
  • 7MALISHIA A R.Investigatingthe application of opposition-basedideas to ant algorithms[M].Master’s thesis,Universityof Waterloo,2007.
  • 8董明刚,牛秦洲,杨祥.基于对立策略的螺栓遗传算法[J].计算机工程,2009,35(20):239-241. 被引量:6
  • 9麦雄发,李玲,彭昱忠.基于PSO与对立学习的细菌觅食算法[J].计算机工程,2011,37(23):171-173. 被引量:6

二级参考文献17

  • 1Khatib W, Fleming P. The Stud GA: A Mini Revolution[C]//Proc. of the 5th International Conference on Parallel Problem Solving from Nature. New York, USA: Springer, 1998.
  • 2Valceres V R, Khatibb W, Fleming P J. Performance Optimization of Gas Turbine Engine[J]. Engineering Applications of Artificial Intelligence, 2005, 18(5): 575-583.
  • 3Simon D. Biogeography-based Optimization[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(6): 702-713.
  • 4Tizhoosh H R. Opposition-based Learning: A New Scheme for Machine Intelligence[C]//Proc. of CIMCA'05. Vienna, Austria: [s. n.], 2005.
  • 5Rahnamayan S, Tizhoosh H R, Salama M MA. A Novel Population Initialization Method for Accelerating Evolutionary Algorithms[J]. Computers and Mathematics with Applications, 2007, 53(10): 1605-1614.
  • 6Rahnamayan S, Tizhoosh H R, Salama M M A. Opposition-based Differential Evolution[J]. IEEE Trans. on Evolutionary Computation, 2008, 12(1): 64-79.
  • 7Rahnamayan S, Tizhoosh H R, Salama M M A. Opposition Versus Randomness in Soft Computing Techniques[J]. Applied Soft Computing, 2008, 8(2): 906-918.
  • 8刘小龙,李荣钧.基于粒子群算法的细菌觅食全局优化算法[J/OL].中国科技论文(2010-04-28).http://www.paperedu.cn/paper_oo0b51.
  • 9Passino K M. Biomimicry of Bacterial Foraging for Distributed Optimization and Control[J]. IEEE Control Systems Magazine, 2002, 22(3): 52-67.
  • 10Biswas A, Dasgupta S, Das S, et al. Synergy of PSO and Bacterial Foraging Optimization: A Comparative Study on Numerical Benchrnarks[C]//Proc. of HAIS'07. Berlin, Germany: Springer- Verlag, 2007: 255-263.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部