期刊文献+

蕴含(K_4-e)+C_4可图序列的刻画

On Potentially (K_4-e)+C_4-graphic Sequences
下载PDF
导出
摘要 对于给定的图H,称π是蕴含H可图的,如果π有一个实现包含H作为子图.Kk,Ck,Pk分别表示k阶完全图,圈长为k的圈和路长为k的路.本文刻画了当n≥6时,蕴含(K4-e)+C4的可图序列. For a graph H given, a graphic sequence π=(d1,d2,..., dn ) is said to be potentially H graphical if it has a realization containing H as a subgraph. Let Kk , Ck and Pk denote a complete graph on /~ vertices, a cycle on k vertices and a path on K+1 vertices, respectively. In this paper the potentially (K4-e)+C4-,graphic sequences is characterized.
作者 胡黎莉
出处 《漳州师范学院学报(自然科学版)》 2012年第1期9-14,共6页 Journal of ZhangZhou Teachers College(Natural Science)
基金 福建省自然科学基金资助项目(2011J01026) 福建省教育厅资助科技项目(JA11165) 漳州师范学院科研基金资助项目(SJ1104)
关键词 度序列 蕴含(K4-e)+C4可图序列 graph degree sequence potentially (K4 - e) + C4-graphic sequences
  • 相关文献

参考文献9

  • 1Eschen E M and Niu J B.On potentially K e 4 graphic sequences[J].Australasian J.of Combinatorics,2004,29:59-65.
  • 2Gould R J,Jacobson M S,Lehel J.Potentially G-graphical degree sequences[A].ALAVI Y.Combinatorics,Graph Theory and Algorithms[C].Kalamazoo Michigan:New Issues Press,1999,451-460.
  • 3胡黎莉,赖春晖.蕴含K_5-Z_4可图序列的刻划[J].漳州师范学院学报(自然科学版),2009,22(1):10-12. 被引量:3
  • 4Hu L L,Lai C H.A Characterization On Potentially 64 K C-graphic Sequences,accepted by Ars Combinatoria..
  • 5Luo R.On potentially k C-graphic sequences[J].Ars Combinatoria,2002,64:301-318.
  • 6Luo R.Warner Morgan.On potentially k K-graphic sequences[J].Ars Combinatoria,2005,75:233-239.
  • 7Kleitman D J and Wang D L.Algorithm for constructing graphs and digraphs with given valences and factors[J].Discrete Math.,1973,6:79-88.
  • 8Li J S and Y J H.A variation of an extremal theorem due to Woodall[J].Southeast Asian Bulletin of Math.,2001,25:427-434.
  • 9Yin M X and Y J H.A Characterization On Potentially()63 K EK-graphic sequences,accepted by Ars Combinatoria.

二级参考文献7

  • 1Eschen E M and Niu J B. on potentially K4- e graphic sequences[J]. Australasian J. of Combinatorics, 2004, 29: 59-65.
  • 2Gould R J, Jacobson M S, Lehel J. Potentially G-graphical degree sequences[A]. ALAVI Y. Combinatorics, Graph Theory, and Algorithms[C]. Kalamazoo Michigan: New Issues Press, 1999, 451-460.
  • 3thi L L and Lai C H. On polentially K5 - E 3 - graphic sequences[J], accepted by Ars Combinatoria.
  • 4Luo R. On potentially Ck - graphic sequences[J]. Ars Combinatoria, 2002, 64: 301-318.
  • 5Luo R, Warner Morgan. On potentially Kk - graphic sequences[J]. Ars Combinatoria, 2005, 75: 233-239.
  • 6Kleitman D J and Wang D L. Algorithm for constructing graphs anti digraphs with given valences and filctors[J]. Discrete Math., 1973, 6: 79-88.
  • 7Li J S and Y J H. A variation of an extremal theorem due to Woodall[J]. Southeast Asian Bulletin of Math., 2001, 25: 427-434.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部