期刊文献+

考虑圣维南翘曲变形的初始扭转薄壁梁单元刚度矩阵 被引量:2

THE PRE-TWISTED THIN-WALLED BEAM ELEMENT STIFFNESS MATRIX CONSIDERING THE SAINT-VENANT WARPING DEFORMATION
原文传递
导出
摘要 基于传统薄壁直梁力学模型,对初始扭转薄壁梁有限元数值模型进行系统的分析与研究。首先基于初始扭转梁的几何变形微分关系,导出初始扭转薄壁梁圣维南翘曲应变。根据传统薄壁直梁有限元力学模型,考虑初始扭转梁圣维南翘曲变形,建立其有限元单元刚度矩阵。最后,通过椭圆截面初始扭转梁算例,并与ANSYS三维实体有限元分析结果进行对比分析,表明建立的考虑圣维南翘曲变形的初始扭转薄壁梁单元刚度矩阵具有良好的精度。 Based on the traditional mechanical model of thin-walled straight beam,it is conducted a systematic analysis and research on the pre-twisted thin-walled beam finite element numerical model.Firstly,based on the geometric deformation differential relationship,it is deduced the pre-twisted thin-walled beam Saint-Venant warping strain.According to traditional thin-walled straight beam finite element mechanical model,it is also established its finite element stiffness matrix considering the Saint-Venant warping deformations.Finally,by calculating the pre-twisted elliptical section beam example,and contrasting three-dimensional solid finite element using ANSYS,the comparative analysis results show that pre-twisted thin-walled beam element stiffness matrix considering Saint-Venant warping deformation has a good accuracy.
出处 《工业建筑》 CSCD 北大核心 2012年第4期60-64,共5页 Industrial Construction
基金 国家自然科学基金项目(50678036) 西北工业大学基础研究基金
关键词 初始扭转 薄壁梁 圣维南 翘曲变形 刚度矩阵 ANSYS pre-twisted thin-walled beam Saint-Venant warping deformation stiffness matrix ANSYS
  • 相关文献

参考文献10

  • 1Shadnam M R,Abbasnia R. Stability of Pretwisted Beams in Cross Bracings[J].Applied Mechanics and Technical Physics,2002,(02):328-335.
  • 2陈昌宏,单建,黄莺.初始扭转轴压杆弹性弯扭屈曲性能研究[J].工程力学,2009,26(6):166-171. 被引量:7
  • 3包世华;周坚.薄壁杆件结构力学[M]北京:中国建筑工业出版社,1991417-427.
  • 4吴家龙.弹性力学[M]上海:同济大学出版社,199340-42.
  • 5杜庆华.工程力学手册[M]北京:高等教育出版社,1994942-949.
  • 6王勖成;邵敏.有限单元法基本原理和数值方法[M]北京:清华大学出版社,1997280-292.
  • 7Petrov E,Geradin M. Finite Element Theory for Curved and Twisted Beams Based on Exact Solutions for Three Dimensional Solids[J].Computer Methods in Applied Mechanics and Engineering,1998,(165):43-127.
  • 8Zupan D,Saje M. OnA proposed Standard Set of Problems to Test Finite Element Accuracy”:the Twisted Beam[J].Finite Elements in Analysis and Design,2004,(40):1445-1451.
  • 9Yardimoglu B,Yildirim T. Finite Element Model for Vibration Analysis of Pre-Twisted Timoshenko Beam[J].Journal of Sound and Vibration,2004,(4/5):741-754.doi:10.1016/j.jsv.2003.05.003.
  • 10ANSYS Inc. ANSYS APDL Programmer’s Guide Release7.0[M].1999.

二级参考文献10

  • 1陈昌宏,单建,黄莺.初始扭转轴压杆弹性扭转屈曲性能研究[J].工业建筑,2008,38(z1):563-565. 被引量:2
  • 2Magomaev L D. Certain problems of the theory of rectilinear, naturally twisted beams [J]. Soviet Applied Mechanics, 1985, 21(9): 901--908.
  • 3Barnett J F. A bridge for the bridges [C]. Conference Proceedings for Bridges. American: ISBN, 1999, 0-9665201-1-4.
  • 4Carlo H Sequin. To build a twisted bridge [C]. Conference Proceedings for Bridges. American: ISBN, 2000, 0-966501-2-2.
  • 5Shadnam M R, Abbasnia R. Stability of pretwisted beams in cross bracings [J]. Applied Mechanics and Technical Physics, 2002, 43(2): 328--335.
  • 6Berdichevskii V L, Starosglskii L A. Bending, extension, and torsion of naturally twisted rods [J]. Applied Mathematics and Mechanics, 1985, 49(6): 746--755.
  • 7Frisch-Fay R. Buckling of pre-twisted bars [J]. International Journal of Mechanical Sciences Press, 1978, 15: 171--181,
  • 8ANSYS Inc. ANSYS APDL programmer's guide release 7.0 [M]. 1999.
  • 9Madhusudhana N, Gautham B P, Ganesan N. Buckling behavior of uniformly and non-uniformly pretwisted beams [J]. Computers and Structures, 19.95, 54(3): 551-- 556.
  • 10Petrov E, Geradin M. Finite element theory for curved and twisted beams based on exact solutions for three dimensional solids. Part 1: Beam concept and geometrically exact nonlinear fomulation, Part 2: anisotropic and advanced beam models [J]. Computer Methods in Applied Mechanics and Engineering, 1998, 165: 43-- 127.

共引文献6

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部