期刊文献+

基于有理样条死亡假设的分数时点寿险净保费责任准备金 被引量:1

Fractional Net Premium Reserve in Life Insurance Based on Rational Interpolation Method
原文传递
导出
摘要 保险责任准备金是保险公司风险管理的重要度量指标,责任准备金的精确合理的测算,将会对保险公司的健康发展起着极其重要的作用。分数时点净保费责任准备金的测算依赖于精算假设,本文在提出一类有理样条死亡假设的基础上,研究了终身寿险的分数时点净保费责任准备金的计算问题。我们得到了其理论计算公式和上下界范围,探讨了调节参数的变化对净保费责任准备金的影响。数据分析表明:分数时点责任准备金对调节参数的变化比较敏感,目前常用的UDD假设下的责任准备金测算值恰是本文方法下的一个边界。所以基于有理样条估计方法的分数时点责任准备金测算在实务中具有很强的灵活性,对保险公司责任准备金风险管理具有重要的指导意义。 In the risk management of insurance companies, insurance reserve is an important measure index. It is very important for the healthy development of insurance companies to calculate the premium reserve precisely and reasonably. Because the calculation of the net premium reserve at a fractional age depends on the actuarial assumption, this paper attempts to discuss the net premium reserve at the fractional age of the whole life insurance based on a rational spline method for estimating the mortality of fractional ages. In this discussion, the calculation formula and the bounds range of the net premium reserve at the fractional ages are obtained; Furthermore, we analyze the influence of the change of the adjustable parame- ter on the net premium reserve. The data analysis shows that not only it is sensitive for the net premium reserve at the fractional age to change the adjustable parameter, but also this reserve value based on the UDD assumption is just a boundary value using our method. So the calculation of the net premium reserves at the fractional ages based on rational spline method is very flexible, and it also has the important guiding significance for the risk management of the insurance reserve.
作者 李世龙 赵霞
出处 《中国管理科学》 CSSCI 北大核心 2012年第2期34-40,共7页 Chinese Journal of Management Science
基金 国家自然科学基金资助项目(71071088) 教育部人文社科项目(08JA910003) 山东省自然科学基金(ZR2010GL014)
关键词 有理样条方法 分数时点 净保费责任准备金 调节参数 rational interpolating method fractional age net premium reserves adjustable parameter
  • 相关文献

参考文献19

  • 1东明,郭亚军,杨怀东.半连续型寿险保单组的准备金精算模型[J].数量经济技术经济研究,2004,21(8):143-148. 被引量:5
  • 2贾念念,贾长青.随机利率下的寿险责任准备金与风险分析[J].哈尔滨工程大学学报,2009,30(8):962-966. 被引量:9
  • 3Neves,C.R,Migon,H.S. Bayesian graduation of mortality rates An application to reserve[J].Insurance:Mathematics and Economics,2007.424-434.
  • 4Young,V.R. Equity-indexed life insurance:pricing and reserving using the principle of equivalent utility[J].North American Actuarial Journal,2003,(01):68-86.
  • 5Maeceau E,Gaillardetz P. On life insurance reserves in a stochastic mortality and interest rates environment[J].Insurance:Mathematics and Economics,1999.261-280.
  • 6Dahl M. Stochastic mortality in life insurance:market reserves and mortality-linked insurance contracts[J].Insurance:Mathematics and Economics,2004.113-136.
  • 7Bowers,N.L,Gerber,H.H,Hickman,J.C,Jones,D.A,Nesbitt,C.J. Actuarial mathematics[M].Society of Actuaries,Sehaumburg,IL,1997.
  • 8Jordan,C.W. Life Contingencies[M].Society of Actuaries,Chicago,IL,1975.
  • 9Forfar D,McCutcheon J,Wilkie D. On graduation by mathematical formula[J].Journal of the Institute of Actuaries,1988.381-402.
  • 10Renshaw A. Actuarial graduation practice and generalized linear and non-linear models[J].Journal of the Institute of Actuaries,1991.295-312.

二级参考文献19

  • 1林建华,龙江,冯敬海.随机利率下的净保费责任准备金[J].大连理工大学学报,2004,44(6):928-930. 被引量:6
  • 2何文炯,蒋庆荣.随机利率下的增额寿险[J].高校应用数学学报(A辑),1998,13(2):145-152. 被引量:36
  • 3蒋庆荣.随机利率下的终身寿险[J].杭州大学学报(自然科学版),1997,24(2):95-99. 被引量:9
  • 4JIA Niannian,HU Yunquan.The crisis analysis and management based on the variable interest rate of Chinese life insurance company[C]//The Second China Workshop on Information System of Crisis Response and Management.Harbin,China,2007:277-281.
  • 5BEEKMAN J A,FUELLING C P.Interest and mortality randomness in some annuities[J].Insurance:Mathematics and Economics,1990,9:185-196.
  • 6BEEKMAN J A,FUELLING C P.Extra randomness in certain annuity models[J].Insurance:Mathematics and Economics,1991,10:275-287.
  • 7PERRY D,STADJE W,YOSEF R.Annuities with controlled random interest rates[J].Insurance:Mathematics and Economics,2003,32:245-253.
  • 8Frees E W : 《Stochastic life contingencies with solvency considerations (with discussions)》[J].《Transactions of the Society of Actuaries》, 1990, Vo142, 911-948.
  • 9Norberg R :《Reserves in life and pension insurance》 [J]. 《Scandinavian Actuarial Journal》, 1991, 3-24.
  • 10Lai S L, Frees E W: 《Examining changes in reserves using stochastic interest models》 [J]. 《Journal of Risk and Insurance》, 1995, Vol62, 535-574.

共引文献18

同被引文献16

  • 1东明,郭亚军,杨怀东.半连续型寿险保单组的准备金精算模型[J].数量经济技术经济研究,2004,21(8):143-148. 被引量:5
  • 2林建华,龙江,冯敬海.随机利率下的净保费责任准备金[J].大连理工大学学报,2004,44(6):928-930. 被引量:6
  • 3Duan Q, Bao B, Du S, Twizell E H. Local Control of Interpolating Rational Cubic Spline Curves [ J ]. Comput- er - Aided Design,2009,41:825 - 829.
  • 4Duan Q, Djidjeli K,Price W G. Twizell, E. H. A Rational Cubic Spline Based on Function Values [J]. Com- puters & Graphics, 1998,22 (4) :479 - 486.
  • 5Duan Q, Djidjeli K, Prcie W G,Twizell E. H. Constrained Control and Approximation Properties of a Rational Interpolating Curve [ J]. Information Sciences,2003,152 : 181 - 194.
  • 6Dahl M. Stochastic Mortality in Life Insurance:Market Reserves and Mortality-linked Insurance Contracts [ J]. Insurance : Mathematics and Economics ,2004,35 : 113 - 136.
  • 7Dahl M, Mckller T. Valuation and Hedging of Life Insurance Liabilities with Systematic Mortality Risk [ J ]. Insurance : Mathematics and Economics ,2006,39 : 193 - 217.
  • 8Frostig E. Properties of the power family of fractional age approximations [ J ]. Insurance : Mathematics and E- conomics ,2003,33 : 163 - 171.
  • 9Li S,Zhao X, Guo N. Fractional Mortality Rate Based on Rational Interpolating Method and Its Applica-tion in Actuarial Science [J]. Quality & Quantity,2013,47:791 -802.
  • 10Jia N, Jia C, Qiu W. A Class of Life Insurance Reserve Model and Risk Analysis in a Stochastic Interest Rate Environment [ J ]. Frontiers of Computer Science in China,2010,4 (2) : 204 - 211.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部