期刊文献+

平面图的强边染色的一个结果

A Result on the Strong Edge Coloring of Planar Graphs
下载PDF
导出
摘要 如果图G的一个正常边染色的任意有公共邻边的两条边的染色不相同,则它是图G的一个强边染色。图G的强边染色所需要的最小颜色数称作图G的强边色数。本文利用差值转移方法证明了最大顶点度为偶数且不小于6的平面图,如果其不含有3圈,则其强边色数不超过5△2/4,特别地,本文证明了最大顶点度为4的平面图,如果其围长不小于5,则其强边色数不超过20。 For a proper edge coloring of a simple graphG,if any two edges which are adjacent to a same edge have different colors,then,it is a strong edge coloring of G.The minimum number of colors of any strong edge colorings of G is the strong chromatic number of G.In this paper,by using discharging method,we proved that the strong chromatic number for planar graphs with even maximum degree which is at least 6 and without 3 cycles is no more than 5Δ~2/4,furthermore,we proved that 20 is an upper bound of the strong chromatic number of planar graphs with maximum degree 4 and girth at least 5.
出处 《西昌学院学报(自然科学版)》 2012年第1期66-67,72,共3页 Journal of Xichang University(Natural Science Edition)
基金 四川文理学院2011年院级科研项目(项目编号:2011Z008Y)
关键词 强边染色 差值转移法 强边色数 Strong edge coloring Discharging method The strong chromatic number
  • 相关文献

参考文献13

  • 1Yao Y Y,Wong S K M,Lingras P. A decision-theoretic rough set model[A].1990.
  • 2张文修;吴伟志.粗糙集理论与方法[M]北京:科学出版社,2001135.
  • 3Duda R O,Hart P E. Pattem Classification and Scene Analysis[M].New York:wiley Press,1973.10.
  • 4Yao Y Y,Zhao Y. Attribute reduction in decision-theoretic rough set modelsLIJ[J].Inforrn-ation sciences,2008,(17):3356-3373.
  • 5贾修一;商琳;陈家骏.基于三枝决策的属性约简[J]中国人工智能进展,2009(06):193-198.
  • 6贾修一,商琳,陈家骏.决策风险最小化属性约简[J].计算机科学与探索,2011,5(2):155-160. 被引量:12
  • 7Li Y,Zhang C,Swan J R. An information filtering model on the web and its application in job agent[J].Knowledge-Based Systems,2000.285-296.
  • 8赵文清,朱永利,高伟华.一个基于决策粗糙集理论的信息过滤模型[J].计算机工程与应用,2007,43(7):185-187. 被引量:15
  • 9Zhou B,Yao Y Y,Luo J. A three-way decision approach to email spam filtering[A].2010.
  • 10lLiu D,Yao Y Y,Li T R. A three-way decisions with decision-theoretic rough sets[J].Intema-tional Journal of Computational Intelligence Systems,2011.66-74.

二级参考文献15

  • 1Yao Y Y, Wong S K M. A decision theoretic framework for approximating concepts[J]. International Journal of Man-Machine Studies, 1992, 37: 793-809.
  • 2Yao Y Y. Decision-theoretic rough set models[C]//Lectnre Notes in Artificial Intelligence 4481: Proceedings of the 2nd International Conference on Rough Sets and Knowledge Technology (RSKT 2007), Toronto, Canada, 2007: 1-12.
  • 3Yao Y Y. Three-way decision: An interpretation of rules in rough set theory[C]//Lecture Notes in Artificial Intelligence 5589: Proceedings of the 4th International Conference on Rough Sets and Knowledge Technology (RSKT 2009), Gold Coast, Australia, 2009: 642-649.
  • 4Yao Y Y. Three-way decisions with probabilistic rough sets[J]. Information Sciences, 2010, 180: 341-353.
  • 5Yao Y Y, Zhao Y. Attribute reduction in decision-theoretic rough set models[J]. Information Sciences, 2008, 178 3356-3373.
  • 6Zhao Y, Wong S K M, Yao Y Y. A note on attribute reduction in the decision-theoretic rough set model[C]//Lecture Notes in Artificial Intelligence 5306: Proceedings of the 6th International Conference on Rough Sets and Current Trends in Computing (RSCTC 2008), Akron, Ohio, USA, 2008: 61-70.
  • 7Jia X Y, Shang L, Chen J. Attribute reduction based on three-way decision[M]//Progress of Artificial Intelligence in China, 2009. Beijing: Beijing University of Posts and Telecommunications Press, 2009: 193-198.
  • 8Skowron A,Son N.Boolean reasoning scheme with some applications in data mining[C]//LNAI 1704:Discovery PKDD'99,Prague,Czech Republic.Berlin:Springer Verlag,1999:107-115.
  • 9Sahami M.A Bayesian approach to filtering junk E-mail[C]//Learning for Text Categorization:Papers from the 1998 Workshop.AAAI Technical Report WS-98-05,1998.
  • 10Cristianini N.An introduction to Support Vector Machines and other kernel-based learning methods[M].Cambridge:Cambridge University Press,2002.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部