期刊文献+

酵母细胞表面展示技术 被引量:6

Recent Advances in Yeast Cell-Surface Display Technology
下载PDF
导出
摘要 酵母细胞表达体系具备较为完善的蛋白质翻译后修饰和分泌的机制。以酵母为基础的细胞表面展示技术是一项新兴的真核蛋白展示技术,已成功应用于蛋白质识别、蛋白质的固定化和定向进化研究,成为了蛋白质工程研究的重要工具。根据与酵母细胞壁的外源目的蛋白融合部位的不同,酿酒酵母表面展示系统主要分为凝集素系统和絮凝素系统2大系统。将该技术引入动物营养研究领域,有望通过诱导宿主产生原虫或甲烷菌的抗体,对瘤胃微生态进行调控,从而以减少甲烷排放;生产高活性的全细胞催化剂,以提高反刍动物和单胃动物对纤维物质的利用效率。为此,本文就该技术的原理、特点和应用领域进行了综述。 Yeast cell has a perfect system for protein post-translational modification and secretion.The cell surface display technology based on yeast is a novel eukaryotic protein display technology.It has been successfully used for protein recognition,immobilization and remediation,and becomes an important tool for the study of protein engineering.Yeast cell surface display technology is divided into two systems,which are agglutinin and flocculin,according to the different insertion sites of the yeast cell wall for target heterologous proteins.If introduced to animal nutrition research,this technology will be a promising strategy to reduce the methane production by the regulation on ruminal microbial ecology,which is inducing of production of antibodies for protozoa and methanogen in host;highly active whole cell biocatalysts will be produced by increasing fiber utilization in ruminant and monogastric animal.Therefore,mechanism,characteristic and application of the technology are reviewed in this paper.
出处 《动物营养学报》 CAS CSCD 北大核心 2011年第11期1847-1853,共7页 CHINESE JOURNAL OF ANIMAL NUTRITION
基金 国家自然科学基金(30800786)
关键词 酵母细胞表面展示 凝集素系统 絮凝素系统 yeast cell-surface display technology agglutinin system flocculin system
  • 相关文献

参考文献7

二级参考文献69

  • 1沈煜,郑华军,王颖,鲍晓明,曲音波,白凤武.木酮糖激酶表达水平对酿酒酵母木糖代谢产物流向的影响[J].生物化学与生物物理进展,2004,31(8):746-751. 被引量:11
  • 2[1]Ying W,Wenlong S,Xiangyong L,et al.Establishment of a xylose metabolic pathway in an industrial strain of Saccharomyces cerevisia[J].Biotech Lett,2004,26:885-890.
  • 3[3]Hamacher T,Becker J.Characterization of the xylose-transporhng properties of yeast hexose transporters and their influence on xylose utilization[J].Microbiol,2002,148:2 783-2 788.
  • 4[4]Miroslav S,Ho NW.Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast[J].Yeast,2004,21(8):671-684.
  • 5[5]Mitsuyoshi U,Atsuo T.Genetic immobilization of proteins on the yeast cell surface[J].Biotechnology Advances,2000,18:121-140.
  • 6[6]Walfridsson M,Bao X,Anderlund M,et al.Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene which expresses an active xylose (glucose) isomerase[J].Appl Environ Microbiol,1996,62(12):4 648-4 651.
  • 7[7]Marko K,Maurice T,Jasper D,et al.Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain[J].FEMS Yeast Res,2005,5:925-934.
  • 8沈煜,侯进,鲍晓明,等.木糖异构酶在酿酒酵母表面的展示[J].工业微生物,2005,36(1):1-3.
  • 9[10]Toshiyuki M,Mitsuyoshi U,Atsuo T,et al.Construction of a starch-utilizing yeast by cell surface engineering[J].Appl Enviro Microbiol,1997,63(4):1 362-1 366.
  • 10[11]Gietz RD,Schiestl RH,Willems AR,et al.Studies on the transformation of intact yeast cells by the LiAc/SSDNA/PEG procedure[J].Yeast,1995,11:355-360.

共引文献7

同被引文献43

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部