期刊文献+

自然计算研究进展 被引量:3

Research advance on natural computing
下载PDF
导出
摘要 自然计算是计算机科学与人工智能领域中重要的研究内容之一.经过几十年的发展,已经逐渐发展成为涉及多个学科的新兴交叉研究领域,其研究目的在于从自然界中寻求解决人类所面临的复杂问题的方法.早期自然计算主要集中在进化计算、人工神经网络、模糊系统3个主要方面,近20年研究人员提出群体智能、人工免疫系统、DNA计算等新方法.对群体智能等新方法的研究现状、发展趋势、存在的问题进行分析,指出未来发展重点和方向. Natural computing is one of the important research areas in the field of computer science and artificial intelligence.It is a new research field which involves many disciplines following development spanning several decades.The aim of natural computing is to seek for the solution to difficult problems faced by humans from nature.Natural computing focused on evolution computing,artificial neural networks,and fuzzy systems in its early days.Over the last two decades,several new natural computing methods,such as swarm intelligence,artificial immune systems,and DNA computing have been proposed.In this paper,it presents research situations,development tendencies,and other matters surrounding new methods such as swarm intelligence were analyzed.Areas of future emphasis and direction in development were also pointed out.
作者 莫宏伟
出处 《智能系统学报》 2011年第6期544-555,共12页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(61075113) 黑龙江省青年学术骨干项目资助项目(1155G18) 中央高校基本科研业务自由探索基金资助项目(HEUCF110441)
关键词 自然计算 生物启发的计算 群智能 分子计算 natural computing biology-inspired computing swarm intelligence molecular computing
  • 相关文献

参考文献8

二级参考文献45

共引文献1018

同被引文献19

  • 1肖磊,张阿卜,徐文进.用MATLAB求解TSP问题的一种改进遗传算法[J].厦门理工学院学报,2005,13(4):38-42. 被引量:17
  • 2Wang Y M, Xiao N F, Yin H L, et al. A two-stage genetic algorithm for large size job shop scheduling problems [ J ]. The International Journal of Advanced Manufacturing Tech- nology, 2008,39(7-8) :813-820.
  • 3Balarnurugan R, Ramakrishnan C V, Singh N. Perform- ance evaluation of a two stage adaptive genetic algorithm (TSAGA) in structural topol%-] optimization [ J ]. Applied Soft Computing, 2008,8(4) : 1607-1624.
  • 4Ma Xuan, Sun Limin, Zhang Yalong. A two-stage genetic algorithm for the muhi-multicast muting [ C ]//Proceedings of the 2nd International Conference on Advances in Compu- tation and Intelligence. 2007:204-213.
  • 5Su C L, YangS M, Huang W L. A two-stage algorithm in-tegrating genetic algorithm and modified Newton method for neural network training in en-neering systems[ J ]. Expert Systems with Applications, 201l ,38(10) : 12189-12194.
  • 6Li Fachao, Xu Li Da, Jin Chenxia, et al. Structure of Multi-Stage Composite Genetic Algorithm (MSC-GA) and its performance [ J ]. Expert Systems with Applications, 2011,38 (7) :8929-8937.
  • 7梁昌勇,陆青,张恩桥,魏兆旺.基于均匀设计的多智能体遗传算法研究[J].系统工程学报,2009,24(1):109-113. 被引量:12
  • 8岳嵚,冯珊.遗传算法的计算性能的统计分析[J].计算机学报,2009,32(12):2389-2392. 被引量:39
  • 9冯阿芳,石研.一种基于改进遗传算法的数据挖掘方法[J].中国科技信息,2010(12):34-35. 被引量:2
  • 10姚静,方彦军,陈广.遗传和禁忌搜索混合算法在机组负荷分配中的应用[J].中国电机工程学报,2010,30(26):95-100. 被引量:25

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部