期刊文献+

利用一类混合方法构造摄动方程的近似孤子解(英文)

Construction of Approximate Soliton Solutions for the Perturbed Equations by a Hybrid Approach
下载PDF
导出
摘要 基于近似对称群方法和一类一般变系数Riccati方程展开法,提出构造摄方程近似孤子解的一类混合方法.然后,选择一种摄动KdV方程举例说明该方法,得到其凶括近似周期和近似孤立波解的四个近似孤子解.该方法可适用于数学物理中的其它摄动方程. Based on the approximate symmetry group method and a generalized Riccati equation with variable coefficients expansion method,a hybrid approach is proposed to construct the approximate soliton solutions of the perturbed differential equations.Then,a perturbed KdV equation is chosen to illustrate the method.As a result,four new soliton solutions,which include approximate periodic solutions and approximate solitary wave solutions are obtained.This method can be used to the other perturbed equations in mathematical physics.
出处 《内蒙古工业大学学报(自然科学版)》 2011年第4期447-454,共8页 Journal of Inner Mongolia University of Technology:Natural Science Edition
基金 Supported by Nationl Natural Science Foundation of China(No.11071159) the College Science Research Project of Inner Mongolia(No.NJzy08180)
关键词 近似对称方法 Riccati方程方法 摄动方程 近似周期解 近似孤立波解 the approximate symmetry method Riccati equation method the perturbed differential equations the approximate periodic solutions the approximate solitary wave solutions
  • 相关文献

参考文献3

二级参考文献48

  • 1Olver P J 1993 Application of Lie Groups to Differential Equation (New York: Springer) vol 107
  • 2Gu C H, Hu H S and Zhou Z X 1999 Darboux Transformarion in Soliton Theory and Its Geometric Applications (Shanghai: Shanghai Science and Technical Publishers)
  • 3Cao C W 1990 Sci. China A 33 528
  • 4Konopelchenko B G, Sidorenko V and Strampp W 1991 Phys. Lett. A 157 17
  • 5Cheng Y and Li Y S 1991 Phys. Lett. A 157 22
  • 6Fushchich W I and Shtelen W M 1989 J. Phys. A: Math. Gen. 22 L887
  • 7Jiao X Y, Yao R X, Zhang S L and Lou S Y 2008 arXiv: 0801.0856v2
  • 8Clarkson P A and Kruskal M D 1989 J. Math. Phys. 30 2201
  • 9Lou S Y 1990 Phys. Lett. A 151 133
  • 10Liao S J 2004 Appl. Math. Comput. 147 499

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部