期刊文献+

求取岩石基质体积模量的线形拟合方法(英文) 被引量:5

Calculations of rock matrix modulus based on a linear regression relation
下载PDF
导出
摘要 岩石基质的体积模量或其倒数--压缩系数,在进行油气预测的流体替换和孔隙度反演时,是重要的输入参数,但是利用现有方法很难准确求得。文中提出了一种求取该参数的线形拟合方法,该方法通过对Gassmann方程的合理简化并引入Eshelby-Walsh干燥岩石椭球包体近似公式,获得了计算岩石基质压缩系数的拟合公式,可方便地利用公式计算该参数。实际碳酸盐岩岩样的岩石物理测试分析显示:利用饱和岩样和干燥岩样测得的基质压缩系数的差异小于1%,说明所求参数是正确的,可靠的。 The rock matrix bulk modulus or its inverse, the compressive coefficient, is an important input parameter for fluid substitution by the Biot-Gassmann equation in reservoir prediction. However, it is not easy to accurately estimate the bulk modulus by using conventional methods. In this paper, we present a new linear regression equation for calculating the parameter. In order to get this equation, we first derive a simplified Gassmann equation by using a reasonable assumption in which the compressive coefficient of the saturated pore fluid is much greater than the rock matrix, and, second, we use the Eshelby- Walsh relation to replace the equivalent modulus of a dry rock in the Gassmann equation. Results from the rock physics analysis of rock sample from a carbonate area show that rock matrix compressive coefficients calculated with water-saturated and dry rock samples using the linear regression method are very close (their error is less than 1%). This means the new method is accurate and reliable.
出处 《Applied Geophysics》 SCIE CSCD 2011年第3期155-162,239,共9页 应用地球物理(英文版)
基金 supported by the National Nature Science Foundation of China (Grant Noss 40739907 and 40774064) National Science and Technology Major Project (Grant No. 2008ZX05025-003)
关键词 体积模量 岩石基质 流体替换 岩石物理 线形拟合 Bulk modulus, rock matrix, fluid substitution, rock physics, linear regression
  • 相关文献

参考文献15

  • 1贺振华,李亚林,曹钧,李琼.地层温压条件下超声波测试技术[J].勘探地球物理进展,2003,26(2):84-87. 被引量:23
  • 2曹均,贺振华,黄德济,李琼.裂缝储层地震波特征响应的物理模型实验研究[J].勘探地球物理进展,2003,26(2):88-93. 被引量:26
  • 3Chen,R.,Huang,T. F.Petrophysics. . 2001
  • 4Chen,R.,Huang,T. F.,Liu,E. R.Petrophysics. . 2009
  • 5Gurevich,B,Galvin,J.Fluid substitution,dispersion,and attenuation in fractured and porousreservoirs insights from new rock physics models. The Leading EDGE . 2007
  • 6Liu,W. L.Reservoir exploitation seismic techniques. . 2004
  • 7Pride,S. R,Gangi,A. F,Morgan,F. D.Derivingthe equations of motion for porous isotropic media. The Journal of The Acoustical Society of America . 1992
  • 8Zhang,J. J,Li,H. B,Liu,H. S,Cui,X. F.Accuracy analysis of dry frame models in rock physicsmodeling: the chinese geophysics. . 2009
  • 9Eshelby J D.The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London Series A Mathematical Physical and Engineering Sciences . 1957
  • 10Russell B,Hedlin K,Hilterman F,Lines LR.Fluid-property discrimination with AVO: A Biot-Gassmann perspective. Geophysics . 2003

二级参考文献12

  • 1陈禺页 黄庭芳.岩石物理学[M].北京:北京大学出版社,2001.231.
  • 2谢里夫R E,吉尔达特L P.勘探地震学(上册)[M].初英,李承楚,译.北京:石油工业出版社,1999.345
  • 3King M S,Fatt I.Ultrasonic shear-wave velocities in rocks subjected to simulated overburden pressure[J].Geophysics, 1962, 27(5):590~598
  • 4King M S.Wave velocities in rocks as a function of changes in overburden pressure and pore fluid saturate[J].Geophysics, 1966, 31(1):50~73
  • 5Batzle M,Wang Z.Seismic properties of pore fluid[J].Geophysics,1992,57(11): 1396~1408
  • 6Tatham R H,Sekharan K K.横波分裂和裂隙强度的一种物理模型研究[C].见:第57届SEG年会论文集,北京:石油工业出版社,1989.249~252
  • 7Assad J M, Tatham R H,McDonald J A. A physical model study of microcrack-induced anisotropy[J].Geophysics,1992,57(12):1562~1570
  • 8Crampin S.Evaluation of anisotropy by shear-wave spilitting[J].Geophysics,1985,50(1): 142~152
  • 9李亚林,谢贤鹏,贺振华,单钰铭,刘树根.岩石孔隙流体对纵横波速度影响的实验研究及意义[J].矿物岩石,1998,18(S1):202-205. 被引量:21
  • 10张帆,贺振华,黄德济,李亚林,唐湘蓉.储层裂隙波场特征物理摸型实验研究[J].石油地球物理勘探,1999,34(6):675-681. 被引量:12

共引文献42

同被引文献92

引证文献5

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部