期刊文献+

非线性/非高斯序贯贝叶斯滤波 被引量:1

Nonlinear/Non-Gaussian Bayesian Sequential Filtering
下载PDF
导出
摘要 序贯Bayesian滤波为Bayesian滤波的递归实现,为在线估计系统状态提供了一个合理的框架。序贯贝叶斯滤波是基于状态—空间模型的。在线性高斯状态—空间模型下,最佳序贯贝叶斯滤波为大家熟知的卡尔曼滤波。在非线性/非高斯状态—空间模型下,最佳序贯贝叶斯滤波不存在通用的解析解,基于卡尔曼滤波的方法和质点滤波方法为比较常用的两类次最佳序贯贝叶斯滤波。它们各有各的优势,是相互补充的。该文采用扩展卡尔曼滤波和序贯重要性重采样质点滤波对两个非线性/非高斯系统的状态进行跟踪,仿真表明系统非线性/非高斯不严重时采用扩展卡尔曼比较合适,非线性/非高斯较严重时采用序贯重要性重采样比较合适。 Bayesian sequential filtering, which is based on state-space model, is recursive, implementation of Bayesian filtedng, and iprovides a suitable framework for estimating the state of system on-line. For linear- Gaussian problems, optimal Bayesian sequential filtering is well-known Kalman filter. For nonlinear oi non- Gaussian problems ther6 is no general analytical expression for Optimal Bayesian sequential filtering, algo- rithms based on Kalman!andpartiele filters are the most popular suboptimal Bayesian Sequential filtering. They all have their place and: are complementary to each other. In this paper, two nonlinear or non-G, aussian proh- lems are resolved with extended Kalman and sequential importance resample. Simulation shows that when non- linear or non--Gaussian is mild, extended Kalman is an appropriate choice and when nonlinear or non-Gattssian is severe, sequential importance resamplelis a wise choice.
出处 《杭州电子科技大学学报(自然科学版)》 2011年第4期9-12,共4页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 国家自然科学基金资助项目(60702022) 国家安全重大基础基金资助项目(613110020102)
关键词 序贯贝叶斯滤波 状态—空间模型 卡尔曼滤波 质点滤波 Bayesian sequential filtering state-space model Kalman filter particle filter
  • 相关文献

参考文献5

  • 1Gordon N J,Salmond D J,Smith A F M.Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEEE Proceedings-F,1993,140(2):107-113.
  • 2Yardim Caglar,Michalopoulou Zoi-Heleni,Gerstoft Peter.Peer-Reviewed Technical Communication-An OverviewofSequential Bayesian Filtering in Ocean Acoustics[J].IEEE Journal of Oceanic Engneering,2011,36(1):107-113.
  • 3Arulampalam M S,Maskell S,Gordon N,etal.A tutorial on particle filters for online Nonlinear/Non-Gaussian BayesianTracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-188.
  • 4Carpenter J,Clifford P,Fearnhead P.Improved particle filter for non-linear problems[J].IEEE Radar Sonar and Navi-gation,1999,146(1):2-7.
  • 5Candy Jmes V.Bootstrap particle filtering[J].IEEE Transactions on Signal Processing,2007,24(4):73-85.

同被引文献15

  • 1潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:231
  • 2KALMAN R E.A new approach to linear filtering and prediction theory[J].ASME Journal of Basic Engineering196082:35-46..
  • 3JULIER S JUHLMANN J K.A new approach for filtering nonlinear system[C]//Proceeding of American Control ConferenceWashington:Seattle1995:1628-1632..
  • 4DOUCET AFREITAS N DGORDON N.Sequential Monte Carlo methods in practice[M].New York:Springer2001..
  • 5ABDALLAH FGNING ABONNIFAIT P.Box particle filtering for nonlinear state estimation using interval analysis[J].Automatica200844:807-815..
  • 6LIU J SCHEN R.Sequential Monte Carlo methods for dynamic systems[J].Journal of the American Statistical Association199893(1):1032-1044..
  • 7HARGREAVES G I.Interval analysis in Matlab[D].Manchester:The University of Manchester2002:416-420..
  • 8GNING ARISTIC BMIHAYLOVA Let al.An introduction to box particle filtering[J].Signal Processing MagazineIEEE2013:30(4):166-171..
  • 9GNING ARISTIC BMIHAYLOVA L.Bernoulli particle/boxparticle filters for detection and tracking in the presence of triple measurement uncertainty[J].IEEE Transactions on Signal Process201260(5):2138-2151..
  • 10SCHIKORA MGNING AMIHAVLOVA Let al.Boxparticle PHD filter for multitarget tracking[C]//Proceedings of the 15th International Conference on Information FusionWachtbergGermany2012:106-113..

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部