摘要
状态-空间模型是一个通用和宽容的模型,它包含了描述系统所要求的所有相关信息。贝叶斯滤波方法是解决状态估计问题的一般框架。当有新数据可用时,序贯滤波方法可以实现估计和更新待估参量。对于运动目标状态跟踪问题,利用状态-空间模型进行建模,并采用序贯贝叶斯方法进行处理,如扩展卡尔曼滤波、unscented卡尔曼滤波和质点滤波。该文给出了这3种方法的仿真结果,从而实现目标状态跟踪。
State-space model is a versatile and robust model.It includes all relevant information required to describe the system under investigation.Bayesian filtering provides a general framework for dynamitic estimation problems.Sequential filtering is used to estimate and update the unknown parameters of a system as data become available.State-space model and sequential Bayesian filtering are used for tracking the states of a moving target.This paper gives the result of three Bayesian filtering methods,namely extended Kalman filtering,unscented Kalman filtering and particle filtering,for tracking the states of a moving target.
出处
《杭州电子科技大学学报(自然科学版)》
2011年第4期35-37,共3页
Journal of Hangzhou Dianzi University:Natural Sciences
基金
国家安全重大基础基金资助项目(613110020102)