期刊文献+

运动目标状态序贯贝叶斯滤波

Sequential Bayesian Filtering for the States of a Moving Target
下载PDF
导出
摘要 状态-空间模型是一个通用和宽容的模型,它包含了描述系统所要求的所有相关信息。贝叶斯滤波方法是解决状态估计问题的一般框架。当有新数据可用时,序贯滤波方法可以实现估计和更新待估参量。对于运动目标状态跟踪问题,利用状态-空间模型进行建模,并采用序贯贝叶斯方法进行处理,如扩展卡尔曼滤波、unscented卡尔曼滤波和质点滤波。该文给出了这3种方法的仿真结果,从而实现目标状态跟踪。 State-space model is a versatile and robust model.It includes all relevant information required to describe the system under investigation.Bayesian filtering provides a general framework for dynamitic estimation problems.Sequential filtering is used to estimate and update the unknown parameters of a system as data become available.State-space model and sequential Bayesian filtering are used for tracking the states of a moving target.This paper gives the result of three Bayesian filtering methods,namely extended Kalman filtering,unscented Kalman filtering and particle filtering,for tracking the states of a moving target.
出处 《杭州电子科技大学学报(自然科学版)》 2011年第4期35-37,共3页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 国家安全重大基础基金资助项目(613110020102)
关键词 序贯贝叶斯滤波 目标运动分析 状态-空间模型 sequential Bayesian filtering target motion analysis state-space model
  • 相关文献

参考文献5

  • 1Yardim C,Michalopoulou Z H,Gerstoft P.An overview of sequential Bayesian Filtering in ocean acoustics[].OceanEng.2011
  • 2Candy J V.Bayesian Signal Processing Classical Modern and Particle Filtering Methods[]..2009
  • 3Julier S J,Uhlmann J K,Durrant-Whyte H F.A new approach for the nonlinear transformation of means and covariances in filters and estimators[].IEEE Transactions on Automatic Control.2000
  • 4M Sanjeev Arulampalam,Simon Maskell,Neil Gordon,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[].IEEE Transactions on Signal Processing.2002
  • 5Kay SM.Fundamentals of Statistical Signal Processing,Volume I: Estimation Theory[]..1993

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部