期刊文献+

基于超像素的条件随机场图像分类 被引量:10

Superpixel-based conditional random field for image classification
下载PDF
导出
摘要 针对图模型在推导和参数估计中时间复杂度较高的问题,在条件随机场(CRF)中引入了超像素的概念,提出了一种基于超像素的CRF图像分类方法。该方法首先通过均值漂移算法将图像过分割成小的均匀区域(称为超像素),然后以超像素为节点、空间相邻的节点以边连接建立图模型,给出了相应的CRF的定义,实现了模型的参数估计和推导。实验结果表明,基于超像素的CRF模型在得到较好分类结果的同时,极大地缩短了运行时间,提高了效率。 Concerning the high time complexity of inference and parameter estimation in graph model, the concept of superpixel was introduced into the Conditional Random Field (CRF), and a superpixel-based CRF image classification method was proposed. This method first over segmented the image into small homogeneous regions which were called superpixels by using mean shift method. Then the graphical model was constructed with superpixels as nodes and the neighboring nodes as edges. The corresponding definition of CRF and the methods for parameter estimatioh and labeling inference were proposed and implemented. The experimental results show that better classification results are obtained by the superpixel-based CRF model. At the same time, running time is largely reduced.
作者 张微 汪西莉
出处 《计算机应用》 CSCD 北大核心 2012年第5期1272-1275,1279,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(41171338) 中央高校基本科研业务费专项基金资助项目(GK200902015) 陕西师范大学青年科技项目(201001003)
关键词 条件随机场 超像素 均值漂移 图像分类 参数估计 Conditional Random Field (CRF) superpixel mean shift image classification parameter estimation
  • 相关文献

参考文献22

  • 1LISZ. Markov random field modeling in image analysis[M].Berlin:Springer-Verlag,2009.
  • 2LAFFERTY J,MCCALLUMA,PEREIRAF. Conditional random fields:Probabilistic models for segmenting and labeling sequence data[A].San Francisco,ca:morgan Kaufmann Publishers,2001.282-289.
  • 3NEAPOLITAN R E. Learning Bayesian networks[M].Upper Saddle Riner,NJ,USA:Prentice Hall,2004.
  • 4DUDARO,HART P E,STORK D G. Pattern classification[M].Singapore:Wiley Interscience,2001.
  • 5BISHOP C M. Pattern recognition and machine learning[M].Beilin:Springer-Verlag,2006.
  • 6SHI J B,MALIK J. Normlized cuts and image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,(08):888-905.
  • 7WANG S,SISKIND J M. Image segmentation with ratio cut[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,(06):675-690.
  • 8CASELLES V,KIMMEL R,SAPIRO G. Geodesic active contours[J].International Journal of Computer Vision,1997,(01):61-79.doi:10.1023/A:1007979827043.
  • 9KASS M,WITKIN A,TERZOPOULOS D. Snakes:Active contour models[J].International Journal of Computer Vision,1988,(04):321-331.
  • 10WANG Y,LOE K F,WU J K. A dynamic conditional random field model for foreground and shadow segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,(02):279-289.

二级参考文献39

  • 1褚一平,叶修梓,张引,张三元.基于分层MRF模型的抗抖动视频分割算法[J].浙江大学学报(工学版),2007,41(11):1793-1796. 被引量:2
  • 2包红强,张兆扬,陈右铭.基于时空曲线演化的多视频运动对象分割算法[J].电子学报,2005,33(1):181-185. 被引量:2
  • 3陈睿,邓宇,向世明,李华.结合强度和边界信息的非参数前景/背景分割方法[J].计算机辅助设计与图形学学报,2005,17(6):1278-1284. 被引量:13
  • 4Otsu N. A Threshold Selection Method from Gray-Level Histogram. IEEE Trans on System, Man and Cybernetics, 1977, 9( 1 ) : 62 - 66.
  • 5Niblack W. Introduction to Digital Image Processing. Upper Saddle River, USA: Prentice Hall, 1986:115-116.
  • 6Sato T, Kanade T, Hughes E K, et al. Video OCR for Digital News Archive // Proc of the IEEE Workshop on Content-Based Access of Image and Video Database. Bombay, India, 1998:52 -60.
  • 7Song Yah, Liu Anan, Pang Lin, et al. A Novel Image Text Extraction Method Based on K-means Clustering//Proc of the 7th IEEE/ ACIS International Conference on Computer and Information Science. Portland, USA, 2008:185-190.
  • 8Gllavata J, Ewerth R, Stefi T, et al. Unsupervised Text Segmentation Using Color and Wavelet Features// Proc of the 3rd International Conference on Image and Video Retrieval. Dublin, Ireland, 2004:216-224.
  • 9Gao Jiang, Yang Jie. An Adaptive Algorithm for Text Detection from Natural Scenes//Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Hawaii, USA, 2001, Ⅱ : 84 - 89.
  • 10Chen Datong, Odobez J M, Bourlard H. Text Segmentation and Recognition in Complex Background Based on Markov Random Field //Proc of the 16th International Conference on Pattern Recognition. Quebec, Canada, 2002, Ⅳ : 227 - 230.

共引文献14

同被引文献70

引证文献10

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部