期刊文献+

基于具有对称性不可分小波的多聚焦图像融合 被引量:5

Multi-focus image fusion based on non-separable symmetric wavelets
下载PDF
导出
摘要 针对可分小波多聚焦图像融合方法存在的不足,提出一种基于四通道不可分小波的多聚焦图像融合方法。首先根据不可分小波理论,构造出一组二维四通道4×4具有对称性的不可分小波滤波器组;然后利用此滤波器组对参加融合的图像进行滤波,低频部分采用简单的加权平均算法,高频部分采用局部窗口能量取大的融合算法对分解后的系数图像进行融合;最后对图像进行重构,并采用熵、平均梯度等指标对融合结果图像进行了评价。实验结果表明,该方法对多聚焦图像的融合有较好的融合效果,与采用相同融合算法的基于可分小波的融合方法相比,能更好地突出低频域边缘细节信息,得到更为清晰的融合结果图像。 A new fusion method of multi-focus images based on the four-channel non-separable wavelet was proposed, which aimed to solve the problem which exists in the separable wavelet-based fusion methods. First, a 4 ×4 non-separable wavelet 4-channel filter bank with linear phase using the theory of non-separable wavelets was constructed. Then images involving the fusion were decomposed by using the filter bank, for low-frequency part, the average value was selected, for the three high-frequency parts of each level, the value of the area window whose energy was bigger was selected. Finally, the new fused image was reconstructed. The performance of the method was evaluated using entropy, average gradient, etc. The experimental results show that it has good effect on the fusion of multi-focus images. The performance is better than that of the separable wavelet fusion method by using the same fusion algorithm. According to this method, the fused images are clearer and the detailed edge information of low-frequency domain is better obtained.
作者 李凯 刘斌
出处 《计算机应用》 CSCD 北大核心 2012年第5期1283-1285,1299,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61072126) 湖北省自然科学基金重点项目(2009CDA133)
关键词 图像处理 不可分小波 图像融合 滤波器组 image processing non-separable wavelet image fusion filter bank
  • 相关文献

参考文献5

二级参考文献87

  • 1黄卉,檀结庆.一种新的基于清晰度的多聚焦图像融合规则[J].计算机工程与应用,2005,41(14):51-52. 被引量:3
  • 2Rioul O. A discrete-time multiresolution theory. IEEE Transactions on Signal Processing, 1993, 41(8): 2591-2606.
  • 3Chipman L J, Orr T M, Graham L N. Wavelets and image fusion. In: Proceedings of the International Conference on Image Processing. Washington D. C., USA: IEEE, 1995. 248-251.
  • 4Li H, Manjunath B S, Mitra S. Multisensor image fusion using the wavelet transform. Graphical Models and Image Processing, 1995, 57(3): 235-245.
  • 5. Jiang X Y, Zhou L W, Gao Z Y. Multispectral image fusion using wavelet transform. In: Proceedings of the Conference on Electronic Image and Multimedia Systems. Beijing, China: SPIE. 355-42.
  • 6Pajares G, de la Cruz J M. A wavelet-based image fusion tutorial. Pattern Recognition, 2004, 37(9): 1855-1872.
  • 7Simoncelli E P, Freeman W T, Adelson E H, Heeger D J. Shiftable multiscale transforms. IEEE Transactions on Information Theory, 1992, 38(2): 587-607.
  • 8Kingsbury N. Complex wavelets for shift invariant analysis and filtering of signals. Applied and Computational Harmonic Analysis, 2001, 10(3): 234-253.
  • 9Yang B, Jing Z L. A simple method to build oversampled filter banks and tight frames. IEEE Transactions on Image Processing, 2007, 16(11): 2682-2687.
  • 10Rockinger O. Image sequence fusion using a shift invariant wavelet transform. In: Proceedings of the International Conference on Image Processing. Santa Barbara, USA: IEEE, 1997. 288-291.

共引文献71

同被引文献47

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部