摘要
提出了一种结合位置先验与稀疏表示的人脸图像超分辨率算法,可对单帧输入的低分辨率人脸图像基于训练集进行超分辨率重建。利用压缩感知理论中的信号分解方法,,将稀疏表示与人脸位置先验信息相结合,使用经过分类的超完备冗余字典,来分别稀疏逼近输入信号的块向量结构。利用最佳的K项原子,线性组合重建出高分辨率图像块。最后按照图像块最初在人脸的位置,将它们拼接为整体人脸。在CAS-PEAL-R1人脸图库上的实验结果表明,该算法使用相对较少的原子,就可以重建出质量较好的高分辨率人脸图像。
A face hallucination method based on sparse representation and position prior was proposed, which can obtain the enlargement of a single low-resolution input. Some perspectives of compressed sensing were applied to the method. The high- and low-resolution over-complete atoms were classified according to different positions of face. The low-resolution face image inputs were approximated by the sparse linear combination of the over-complete atoms which were classified. The sparse coefficients were obtained to reconstruct the high-resolution data of certain position. According to their original positions, the generated patches were integrated into a global face. The experimental results illustrate that the proposed method can generate satisfving high-resolution face image 1Jsin~ fewer atoms comnared to other methods.
出处
《计算机应用》
CSCD
北大核心
2012年第5期1300-1302,1324,共4页
journal of Computer Applications
基金
国家自然科学基金资助项目(61101215)
中央高校基本科研业务费专项资金资助项目(CHD2011JC146)
长安大学基础研究支持计划专项基金资助项目
关键词
稀疏表示
压缩感知
超完备字典
位置先验
人脸图像
超分辨率
sparse representation
compressed sensing
over-complete dictionary
position prior
face image
super-resolution