期刊文献+

基于微分进化算法的二自由度PID控制器参数优化 被引量:2

Optimization of 2D freedom PID controller parameters based on DE
原文传递
导出
摘要 针对二自由度PID控制器参数多、调节困难等问题,提出了一种基于微分进化算法参数调节优化方法。证明了微分进化算法能够收敛到平稳点,并具有概率全局收敛性。研究了二自由度PID控制器参数与抑制特性、跟踪特性的关系,并将微分算法与遗传算法、粒子群算法的参数优化结果进行了比较。仿真验证表明,微分算法能够更好地实现二自由度PID控制器参数的调节,具有优异的跟踪特性和抑制特性。 With regard to the parameter regulation problem with 2D freedom PID controllers which have multiple parameters,a parameter regulation and optimization method is put forward based on differential evolution(DE) algorithm,which can converge to the equilibrium point with global convergence in probability.The relation between 2D freedom PID controller parameters and the suppression and tracking characteristics is studied,and parameter optimization results using the DE algorithm are compared with those using the genetic algorithm and the PSO algorithm respectively.Simulation shows that the DE algorithm can regulate 2D freedom PID controllers very well with excellent tracking and suppression characteristics.
出处 《飞行力学》 CSCD 北大核心 2012年第2期139-142,146,共5页 Flight Dynamics
关键词 微分进化算法 收敛性 二自由度PID控制器 参数优化 differential evolution algorithm convergence 2D freedom PID controller parameter optimization
  • 相关文献

参考文献6

  • 1Cristian I,Trelea C.The particle swarm optimization algo-rithm:convergence analysis and parameter selection[J].Information Processing Letters,2003,83(6):317-325.
  • 2Rainer S,Price K.Differential evolution-a simple and ef-ficient heuristic for global optimization over continuousspaces[J].Journal of Global Optimization,1997,11(4):341-359.
  • 3Bingul Z,Sekmen A,Zein-Sabatto S.Evolutionary approachto multi-objective problems using adaptive algorithms[C]//Proceedings of the IEEE International Conferenceon Systems,Man and Cybernetics.Piscataway,2000:1923-1927.
  • 4Astrom K J,Hagglund T.The future of PID control[J].Control Engineering Practice,2001,9(4):1163-1175.
  • 5龚怀云,寿纪麟,王绵森.应用泛函分析[M].西安:西安交通大学出版社,1995:10-16.
  • 6杨帆,胡春平,颜学峰.基于蚁群系统的参数自适应粒子群算法及其应用[J].控制理论与应用,2010,27(11):1479-1488. 被引量:24

二级参考文献16

  • 1王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 2陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 3韩江洪,李正荣,魏振春.一种自适应粒子群优化算法及其仿真研究[J].系统仿真学报,2006,18(10):2969-2971. 被引量:122
  • 4蒋玲艳,张军,钟树鸿.蚁群算法的参数分析[J].计算机工程与应用,2007,43(20):31-36. 被引量:32
  • 5KENNEDY J, EBERHART R C. Particle swarm optimization[C] //Proceedings of lEEE International Conference on Neural Networks. Perth, Australia: IEEE, 1995:1942 - 1948.
  • 6EBERHART R C, SHI Y H. Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization[C]//Proceedings of the 2000 Congress on Evolutionary Computation. San Diego, USA: IEEE, 2000:84 - 88.
  • 7CLERC M, KENNEDY J. The particle swami explosion, stability, and convergence in a multidimensional complex space[J].IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58 - 73.
  • 8NOBUHIRO Iwasaki, KEIICHIRO Yasuda. Dynamic parameter tuning of particle swarm optimization[J]. IEEE Transactions on Electrical and Electronic Engineering, 2006, 1 (4): 353 - 363.
  • 9MOZAFARI B. A hybrid of particle swarm and ant colony optimization algorithms for reactive power market simulation[J]. Journal of Intelligent and Fuzzy Systems, 2006, 17(6): 1064 - 1246.
  • 10SHI C X, BUY Y, LI Z G. Path planning for deep sea mining robot based on ACO-PSO hybrid algorithm, intelligent computation technology and automafion(ICICTA)[C]//2008 International Conference. Washington DC: IEEE Computer Society, 2008, 1; 125 - 129.

共引文献26

同被引文献32

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部