摘要
Using Vanderbilt-type plane-wave ultrasoft pseudopotentials within the generalized gradient approximation(GGA) in the frame of density functional theory(DFT),we have investigated the crystal structures,elastic,and thermodynamic properties for Ti2SC under high temperature and high pressure.The calculated pressure dependence of the lattice volume is in excellent agreement with the experimental results.The calculated structural parameter of the Ti atom experienced a subtle increase with applied pressures and the increase suspended under higher pressures.The elastic constants calculations demonstrated that the crystal lattice is still stable up to 200 GPa.Investigations on the elastic properties show that the c axis is stiffer than the a axis,which is consistent with the larger longitudinal elastic constants(C 33,C 11) relative to transverse ones(C 44,C 12,C 13).Study on Poisson's ratio confirmed that the higher ionic or weaker covalent contribution in intra-atomic bonding for Ti2SC should be assumed and the nature of ionic increased with pressure.The ratio(B/G) of bulk(B) and shear(G) moduli as well as B/C 44 demonstrated the brittleness of Ti2SC at ambient conditions and the brittleness decreased with pressure.Moreover,the isothermal and adiabatic bulk moduli displayed opposite temperature dependence under different pressures.Again,we observed that the Debye temperature and Gru篓neisen parameter show weak temperature dependence relative to the thermal expansion coefficient,entropy,and heat capacity,from which the pressure effects are clearly seen.
Using Vanderbilt-type plane-wave ultrasoft pseudopotentials within the generalized gradient approximation(GGA) in the frame of density functional theory(DFT),we have investigated the crystal structures,elastic,and thermodynamic properties for Ti2SC under high temperature and high pressure.The calculated pressure dependence of the lattice volume is in excellent agreement with the experimental results.The calculated structural parameter of the Ti atom experienced a subtle increase with applied pressures and the increase suspended under higher pressures.The elastic constants calculations demonstrated that the crystal lattice is still stable up to 200 GPa.Investigations on the elastic properties show that the c axis is stiffer than the a axis,which is consistent with the larger longitudinal elastic constants(C 33,C 11) relative to transverse ones(C 44,C 12,C 13).Study on Poisson's ratio confirmed that the higher ionic or weaker covalent contribution in intra-atomic bonding for Ti2SC should be assumed and the nature of ionic increased with pressure.The ratio(B/G) of bulk(B) and shear(G) moduli as well as B/C 44 demonstrated the brittleness of Ti2SC at ambient conditions and the brittleness decreased with pressure.Moreover,the isothermal and adiabatic bulk moduli displayed opposite temperature dependence under different pressures.Again,we observed that the Debye temperature and Gru篓neisen parameter show weak temperature dependence relative to the thermal expansion coefficient,entropy,and heat capacity,from which the pressure effects are clearly seen.
基金
Project supported by the National Natural Science Foundation of China(Grant Nos.10974139,10964002,11104247,and 11176020)
the Natural Science Foundation of Guizhou Province,China(Grant Nos.[2009]2066 and [2009]07)
the Project of Aiding Elites' Research Condition of Guizhou Province,China(Grant No.TZJF-2008-42)
the Science Foundation from Education Ministry of Zhejiang Province,China(Grant No.Y201121807)