期刊文献+

基于变步长搜索黄金分割优化的自聚焦算法 被引量:3

A Novel Autofocus Algorithm Based on Variable Step Searching and Golden Section Method
下载PDF
导出
摘要 为了获得高分辨的合成孔径雷达(SAR)图像,需采用自聚焦算法对SAR图像进行处理。文中介绍了利用图像对比度最优准则进行自聚焦的原理方法,将对比度最优自聚焦过程等效为最优一维搜索模型。同时,介绍了变步长搜索黄金分割算法的原理,首先通过变步长搜索确定搜索区间,然后采用黄金分割法进行迭代收敛,当满足终止条件时,停止迭代并得到最终的多普勒调频率最优估计值。与现有的算法相比,基于变步长搜索黄金分割优化的自聚焦算法具有收敛速度快、鲁棒性强的优点。实测数据处理结果验证了算法的有效性。 In order to obtain a high resolution synthetic aperture radar (SAR) image, it is necessary to use the autofocus algorithm for SAR image processing. In this paper, theory of contrast optimization autofocus (COA) algorithm is introduced. The process of COA is described as an optfinal one dimension searching model. Then, theory of variable step searching and golden section algo- rithm is presented. First, convergence region is set by variable step searching. Then, by means of iteration, the golden section method is applied. And the iterative process may be continued until the end condition is met. Finally, the optimal estimation of Doppler chirp rate is acquired. Compared with the existing methods, the proposed algorithm has the advantages of fast convergence speed and strong robust ability. The obtained results prove the validity of this algorithm.
出处 《现代雷达》 CSCD 北大核心 2012年第4期48-52,共5页 Modern Radar
基金 国家自然科学基金资助课题(60901068)
关键词 合成孔径雷达 自聚焦 对比度最优 黄金分割法 synthetic aperture radar autofocus contrast optimization golden section method
  • 相关文献

参考文献9

  • 1Fornaro G. Trajectory deviations in airborne SAR:analysis and compensation[J].IEEE Transactions on Aerospace and Electronic Systems,1999,(03):997-1009.doi:10.1109/7.784069.
  • 2Xing Mengdao,Jiang Xiuwei,Wu Reniao. Motion compensation for UAV SAR based on raw radar data[J].IEEE Transactions on Geoscience and Remote Sensing,2009,(08):2870-2883.
  • 3Fang Jiancheng,Gong Xiaolin. Predictive iterated Kalman filter for NS/GPS integration and its application to SAR motion compensation[J].IEEE Transactions on Instrumentation and Measurement,2010,(04):909-915.
  • 4Morrison R L,Do M N,Munson D C. SAR image autofocus by sharpness optimization:a theoretical study[J].IEEE Transactions on Image Processing,2007,(09):2309-2321.doi:10.1109/TIP.2007.903252.
  • 5Berizzi F,Corsini G. Autofocusing of inverse synthetic aperture radar images using contrast optimization[J].IEEE Transactions on Aerospace and Electronic Systems,1996,(03):1185-1191.doi:10.1109/7.532282.
  • 6武昕伟,朱兆达.利用对比度最大化实现SAR图像自聚焦[J].现代雷达,2002,24(3):20-22. 被引量:9
  • 7刘月花,荆麟角.对比度最优自聚焦算法[J].电子与信息学报,2003,25(1):24-30. 被引量:15
  • 8邓云凯,王宇,杨贤林,张志敏.基于对比度最优准则的自聚焦优化算法研究[J].电子学报,2006,34(9):1742-1744. 被引量:8
  • 9谢政;李建平;汤泽滢.非线性最优化[M]长沙:国防科技大学出版社,2003.

二级参考文献4

  • 1John C.Curlander,Robert N.McDonough.Synthetic Aperture Radar Systems and Signal Processing[M].New York:John Wiley&sons,INC,1991.131-139.
  • 2Fabrizio,Berizzi,Giovanni Corsin,et al.Autofocusing of Inverse Synthetic Aperture Radar Images Using Contrast Optimization[J].IEEE Trans,1996,AES-32(3):1185-1191.
  • 3D Blacknell,S Quegan.Motion Compensation Using SAR Autofocus[J].International Journal of Remote Sensing,1991 12(2):253-275.
  • 4刘月花,荆麟角.对比度最优自聚焦算法[J].电子与信息学报,2003,25(1):24-30. 被引量:15

共引文献23

同被引文献10

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部