期刊文献+

基于Gabor滤波与区域生长的细胞分割 被引量:4

Cell Segmentation Based on Gabor Filtering and Regional Growth
下载PDF
导出
摘要 贴壁细胞图像中细胞大小形状各不相同,细胞内部分区域与细胞边缘具有相近的灰度,部分细胞边缘较细或者断裂,为后续正确的分割计数带来了困难。传统的基于区域的图像分割很容易造成过分割和欠分割,前者得不到完整的细胞边缘,后者使细胞内部出现大量杂质点。为解决以上问题,首先利用Gabor滤波器的方向性滤波特性对细胞边缘进行增强,然后选择细胞边缘对应的高灰度点作为种子点进行8连通约束的区域生长,最后对区域生长后的图像进行形态学闭运算消除小的空洞和毛刺,得到完整的细胞边缘图像。与阈值法和边缘检测法的比较结果表明,该算法分割效果较好且对噪声不敏感。 The wall-stuck cells are different in sizes and shapes, the gray grade of cell inner regions is close to that of cell edges, the parts of the cell edges are thin and broken, leading to the difficulty for afterwards correctly segmenting and counting the number of cells. The traditional image segmentation based on regions was easy to be over segmented or inadequately segmented. The former cannot obtain the complete edge of cell and the latter obtains a number of ira-purity spots. In order to solve the above problem,first,Gabor filter was used to enhance the edges in different direc- tions;then, the high gray grade points corresponding to cell edges were used as seed points to carry out the regional growth with eight connective restrictions;finally,the morphologically closed operation was done for the image after the regional growth to eliminate small cavities and burrs and to get the image with complete cell edge. The results show that this algorithm is of good effect of segmentation and not sensitive to noise compared with threshold method and edge detection method.
出处 《山东科技大学学报(自然科学版)》 CAS 2012年第2期99-103,共5页 Journal of Shandong University of Science and Technology(Natural Science)
基金 国家自然科学基金项目(60472047)
关键词 贴壁细胞图像分割 GABOR滤波 带约束的区域生长 形态学闭运算 wall-stuck cell image segmentation Gabor filtering regional growth with restriction morphologicallyclosed operation
  • 相关文献

参考文献16

  • 1BOMANS M,HOHNE K H,TIEDE U. 3-D segmentation of MR images of the head for 3-D display[J].IEEE Transactions on Medical Imaging,1990,(02):177-183.doi:10.1109/42.56342.
  • 2BERG HOLM F. Edge focusing[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1987,(09):726-741.
  • 3应骏,叶秀清,顾伟康.一个基于知识的边沿提取算法[J].中国图象图形学报(A辑),1999,4(3):239-242. 被引量:9
  • 4WILKINSON M H F. Optimizing edge detectors for robust automatic threshold selection:Coping with edge curvature and noise[J].CVGIP:Graphical Models and Image Processing,1998.385-401.
  • 5MARDIA K V,HAINSWORTH T J. A spatial thresholding method for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998.919-927.
  • 6HALl.L O,BENSAID A M,CLARKE L P. A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain[J].IEEE Transactions on Neural Networks,1992,(05):672-681.
  • 7TREMEAU A,BOREL N. A region growing and merging algorithm to color segmentation[J].Pattern Recognition,1990,(09):935-952.
  • 8WANG J P. Stochastic relaxation on partitions with connected components and its application to image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,(08):362-369.doi:10.1109/34.683775.
  • 9PAVLIDIS T,LIOW Y T. Integrating region growing and edge detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,(03):225-233.doi:10.1109/34.49050.
  • 10王媛媛,彭延军.流域分割方法在储粮昆虫图像中的应用[J].山东科技大学学报(自然科学版),2007,26(2):79-82. 被引量:4

二级参考文献13

共引文献16

同被引文献20

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部