期刊文献+

Motion feature descriptor based moving objects segmentation

Motion feature descriptor based moving objects segmentation
下载PDF
导出
摘要 A novel moving objects segmentation method is proposed in this paper. A modified three dimensional recursive search (3DRS) algorithm is used in order to obtain motion information accurately. A motion feature descriptor (MFD) is designed to describe motion feature of each block in a picture based on motion intensity, motion in occlusion areas, and motion correlation among neighbouring blocks. Then, a fuzzy C-means clustering algorithm (FCM) is implemented based on those MFDs so as to segment moving objects. Moreover, a new parameter named as gathering degree is used to distinguish foreground moving objects and background motion. Experimental results demonstrate the effectiveness of the proposed method.
出处 《High Technology Letters》 EI CAS 2012年第1期84-89,共6页 高技术通讯(英文版)
基金 Supported by the National Natural Science Foundation of China (No. 60772134, 60902081, 60902052) the 111 Project (No.B08038) the Fundamental Research Funds for the Central Universities(No.72105457).
关键词 motion estimation (ME) motion feature descriptor (MFD) fuzzy C-means clustering .moving objects segmentation video analysis 运动物体分割 特征描述 模糊C-均值聚类算法 分割方法 运动信息 运动特征 运动强度 MFD
  • 相关文献

参考文献14

  • 1ITU Telecom Standardization Sector of 1TU. Advanced Video Coding for Generic Audiovisual Services, ITU-T Recommendation H.264 and ISO/IEC 14496-10 AVC Standard. Geneva: ITU-T Publishers, 2009. 1-670.
  • 2Bruyne S, Poppe C, Verstockt S, et al. Estimating motion reliability to improve moving object detection in the H.264/AVC domain. In: Proceedings of IEEE International Conference onMultimedia & Expo (ICME), New York City, USA, 2009. 330- 333.
  • 3Niu C F, Liu Y S Moving object segmentation based on video coding information in H.264 compressed domain. In: Proceedings of International Conference on Advanced Computer Theory and Engineering (ICACTE), Cairo, Egypt, 2009. 517-525.
  • 4Kas C, Nicolas H. H.264/SVC scene motion analysis. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Taiwan, China, 2009. 957-960.
  • 5Xu H F, Younis A A, Kabuka M R. Automatic moving object extraction for content-based applications. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14 (6): 796- 812.
  • 6Feghali R. Multi-frame simultaneous motion estimation and segmentation. IEEE Transactions on Consumer Electronics, 2005, 15(1): 245-248.
  • 7Kulic D, Takano W, Nakamura Y. Online segmentation and clustering f-om continuous observation of whole body motions. IEEE Trans actions on Robotics, 2009, 25(5): 1158-1166.
  • 8Denman S, Fookes C, Sridharan S. Improved simultaneous computation of motion detection and optical flow for object tracking. In: Proceedings of Digital Image Computing: Techniques and Applications (DICTA), Melbourne, Australia, 2009. 175-182.
  • 9Bars A G, Pitas I. Optical flow estimation and moving object segmentation based on median radial basis function network. IEEE Transactions on Image Processing, 1998, 7(5): 693-702.
  • 10Murali S, Girisha R. Segmentation of motion objects from surveillance video sequences using temporal differencing combined with multiple correlation. In: Proceedings of IEEE Advanced Video and Signal Based Surveillance (AVSS), Genoa, Italy. 2009. 472-478.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部