期刊文献+

Early Flood Warning for Linyi Watershed by the GRAPES/XXT Model Using TIGGE Data 被引量:2

Early Flood Warning for Linyi Watershed by the GRAPES/XXT Model Using TIGGE Data
原文传递
导出
摘要 Early and effective flood warning is essential for reducing loss of life and economic damage. Three global ensemble weather prediction systems of the China Meteorological Administration (CMA), the European Centre for Medium-Range Weather Forecasts (ECMWF), and the US National Centers for Environmental Prediction (NCEP) in THORPEX (The Observing System Research and Predictability Experiment) In- teractive Grand Global Ensemble (TIGGE) archive are used in this research to drive the Global/Regional Assimilation and PrEdiction System (GRAPES) to produce 6-h lead time forecasts. The output (precipita- tion, air temperature, humidity, and pressure) in turn drives a hydrological model XXT (the first X stands for Xinanjiang, the second X stands for hybrid, and T stands for TOPMODEL), the hybrid model that combines the TOPMODEL (a topography based hydrological model) and the Xinanjiang model, for a case study of a flood event that lasted from 18 to 20 July 2007 in the Linyi watershed. The results show that rainfall forecasts by GRAPES using TIGGE data from the three forecast centers all underestimate heavy rainfall rates; the rainfall forecast by GRAPES using the data from the NCEP is the closest to the obser- vation while that from the CMA performs the worst. Moreover, the ensemble is not better than individual members for rainfall forecasts. In contrast to corresponding rainfall forecasts, runoff forecasts are much better for all three forecast centers, especially for the NCEP. The results suggest that early flood warning by the GRAPES/XXT model based on TIGGE data is feasible and this provides a new approach to raise preparedness and thus to reduce the socio-economic impact of floods. Early and effective flood warning is essential for reducing loss of life and economic damage. Three global ensemble weather prediction systems of the China Meteorological Administration (CMA), the European Centre for Medium-Range Weather Forecasts (ECMWF), and the US National Centers for Environmental Prediction (NCEP) in THORPEX (The Observing System Research and Predictability Experiment) In- teractive Grand Global Ensemble (TIGGE) archive are used in this research to drive the Global/Regional Assimilation and PrEdiction System (GRAPES) to produce 6-h lead time forecasts. The output (precipita- tion, air temperature, humidity, and pressure) in turn drives a hydrological model XXT (the first X stands for Xinanjiang, the second X stands for hybrid, and T stands for TOPMODEL), the hybrid model that combines the TOPMODEL (a topography based hydrological model) and the Xinanjiang model, for a case study of a flood event that lasted from 18 to 20 July 2007 in the Linyi watershed. The results show that rainfall forecasts by GRAPES using TIGGE data from the three forecast centers all underestimate heavy rainfall rates; the rainfall forecast by GRAPES using the data from the NCEP is the closest to the obser- vation while that from the CMA performs the worst. Moreover, the ensemble is not better than individual members for rainfall forecasts. In contrast to corresponding rainfall forecasts, runoff forecasts are much better for all three forecast centers, especially for the NCEP. The results suggest that early flood warning by the GRAPES/XXT model based on TIGGE data is feasible and this provides a new approach to raise preparedness and thus to reduce the socio-economic impact of floods.
出处 《Acta meteorologica Sinica》 SCIE 2012年第1期103-111,共9页
基金 Supported by the National Basic Research and Development (973) Program of China (2010CB951404) National Nature Science Foundation of China (40971024 and 31101073) Natural Science Research Fund of the Education Department of Sichuan Province (09ZA075) China Meteorological Administration Special Public Welfare Research Fund (GYHY200906007)
关键词 TIGGE GRAPES flood warning XXT rainfall-runoffprocess TIGGE, GRAPES, flood warning, XXT, rainfall-runoffprocess
  • 相关文献

参考文献3

二级参考文献36

共引文献84

同被引文献78

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部