期刊文献+

晶硅电池在低倍聚光条件下短路电流变化规律分析 被引量:2

ANALYSIS OF SHORT CIRCUIT CURRENT OF SILICON CELLS UNDER LOW CONCENTRATION
下载PDF
导出
摘要 在对常规晶硅电池的性能测量过程中发现,在常温非聚光情况下,晶硅电池短路电流Isc与温度保持线性关系;但在高温低倍聚光情况下,短路电流Isc出现偏离线性的现象。使用双二极管的晶硅电池等效模型进行分析,简化短路电流表达式。在此基础上使用公式对Isc出现的偏离线性现象进行分析,指出并联电阻Rsh与串联电阻Rs的量级变化差别,引起Isc出现偏离线性,并据此定义了一个短路电流偏离线性系数αIsc。分析了短路电流偏离线性系数αIsc对Isc偏离线性的影响,在高温低倍聚光情况下,αIsc<1,晶硅电池的Isc出现明显下降。因此,在低倍聚光情况下,具有大并联电阻Rsh的晶硅电池,即αIsc≈1,能保证输出电流的稳定性。 In measuring the performance of silicon cells, it is found that the crystalline silicon cells' short circuit current Isc and temperature maintain a linear relationship without concentration at normal temperature, but short circuit current and temperature don' t keep a linear relationship under low concentration at high temperature. The two diode equivalent model of the crystalline silicon cells was used to analyze the expression of short circuit current, and the phenomenon deviating linearity of I^c, which was caused by the difference of magnitude changes of the shunt resistance Rsh and the series resistance Rs. Hereby, a coefficient aIac was defined, which was used to indicate whether short circuit current Iac and temperature maintain a linear relationship. The connection between this coefficient Iac and the performance of short circuit current at different temperatures and concentrations was analyzed.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2012年第4期618-624,共7页 Acta Energiae Solaris Sinica
关键词 晶硅电池 双二极管模型 低倍聚光 短路电流 线性 短路电流偏离线性系数 crystalline silicon cells two diode model low concentration short circuit current linear relationship coefficient of linear relationship
  • 相关文献

参考文献15

  • 1Chapin D M,Fuller C S,Pearson G L. A new silicon p-n junction photocell for converting solar radiation into electrical power[J].Journal of Applied Physics,1954,(05):676-677.
  • 2Whitfield G R,Bentley R W,Weatherby C K. The development and testing of small concentrating PV systems[J].Journal of Solar Energy Engineering,1999,(1-3):23-34.
  • 3Valera P,Esteban A,Carrillo M D. Solar energy:Comparative analysis of solar technologies for electricity production[A].Osaka,Japan,2003.2482-2485.doi:10.1007/s00221-009-2110-0.
  • 4Shaltout M A M,El-Nicklawy M M,Hassan A F. The temperature dependence of the spectral and efficiencybehavior of Si solar cell under low concentrated solar radiation[J].Renewable Energy,2000,(3-4):445-458.
  • 5Soheiman D,Safer B L,Chubb D. Measurement and characterization of concentrator solar cells[A].Osaka,Japan,2003.885-888.doi:10.1002/elps.200990080.
  • 6Meneses-Rodriguez D,Horley P P,Gonzalez-Hernandez J. Photovoltaic solar cells performance at elevated temperatures[J].Journal of Solar Energy Engineering,2005,(02):243-250.doi:10.1111/j.1743-6109.2009.01423.x.
  • 7Green M A. Solar cells[M].Kensington:University of New South Wales,1992.
  • 8van Dyk E E,Scott B J,Meyer E L. Temperature dependence of performance of crystalline silicon photovotaic modules[J].South African Journal of Science,2000,(04):198-200.
  • 9Radziemska E,Klugmann E. Thermally affected parameters of the current-voltage characteristics of silicon photocell[J].Energy Conversion and Management,2002,(14):1889-1900.
  • 10Lu Z H;Song Q;Li S Q.The effect of non-uniform illumination on the performance of conventional polycrystalline silicon solar cell[A]北京,20071445-1448.

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部