期刊文献+

一类具多时滞二阶非线性微分方程的周期解

Periodic Solutions for Second-Order Differential Equations with Deviating Arguments
下载PDF
导出
摘要 研究一类具有多变时滞的二阶非线性微分方程x″(t)+f1(x(t))x′(t)+f2(x(t-τ1(t)))(x′(t))2+g(t,x(t-τ2(t)))的周期解的存在性问题.利用重合度理论中的连续定理和一些分析技巧,得到该方程存在周期解的一些新结果,所得结果推广和改进了刘斌的结果. In this paper,we study the problem on the existence of periodic solutions for a class of nonlinear second-order differential equations with deviating arguments x″(t)+f1(x(t))x′(t)+f2(x(t-τ1(t)))(x′(t))2+g(t,x(t-τ2(t))).By means of the continuation theorem of coincidence degree theory and some analysis techniques,we obtain some news results on the existence of periodic solutions for the equations.Our results generalize and improve the one made by Liu Bin.
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2012年第3期348-353,共6页 Journal of Huaqiao University(Natural Science)
基金 国务院侨办科研基金资助项目(09QZR10)
关键词 泛函微分方程 重合度理论 可变时滞 周期解 nonlinear differential equation coincidence degree theory deviating argument periodic solution
  • 相关文献

参考文献9

  • 1GUIDORIZZI H L. Oscillating and periodic solutions of equations of the type x″+f1 (x)x′+f2 (x)(x')2 +g(x)=0[J].Journal of Mathematical Analysis and Applications,1993,(01):11-23.doi:10.1006/jmaa.1993.1197.
  • 2POURNAKI M R,RAZANI A. On the existence of periodic solutions for a class of generalize forced Liénard equations[J].Applied Mathematics Letters,2007,(03):248-254.doi:10.1016/j.aml.2006.06.004.
  • 3佘志炜,王全义.一类具有偏差变元的二阶泛函微分方程周期解[J].华侨大学学报(自然科学版),2009,30(6):709-714. 被引量:4
  • 4LU Shi-ping,GE Wei-gao. Periodic solutions for a kind of second-order differential equations with multiple deviating arguments[J].Applied Mathematics and Computation,2003,(1):195-209.doi:10.1016/S0096-3003(02)00536-2.
  • 5LIU Bing. Periodic solutions of a nonlinear second-order differential equation with deviating argument[J].Journal of Mathematical Analysis and Applications,2005,(01):313-321.doi:10.1016/j.jmaa.2005.01.045.
  • 6LU Shi-ping,GE Wei-gao,ZHENG Zu-xiou. Periodic solutions to neutral differential equation with deviating arguments[J].Applied Mathematics and Computation,2004,(01):17-27.
  • 7LU Shi-ping,GE Wei-gao. Periodic solutions for a kind of Liénard equation with a deviating argument[J].Journal of Mathematical Analysis and Applications,2004,(01):231-243.doi:10.1016/j.jmaa.2003.09.047.
  • 8LIU Bin-wen,HUANG Li-hong. Periodic solutions for a kind of Rayleigh equation with a deviating argument[J].Journal of Mathematical Analysis and Applications,2006,(02):491-500.
  • 9GAME R E,MAWHIN J L. Coincidence degree and nonlinear differential equations[M].Beilin:Springer-Verlag,1977.

二级参考文献9

  • 1LIYONGXIANG.POSITIVE PERIODIC SOLUTIONS OF FIRST AND SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS[J].Chinese Annals of Mathematics,Series B,2004,25(3):413-420. 被引量:17
  • 2鲁世平,葛渭高.共振情形m-点边值问题解的存在性[J].数学学报(中文版),2006,49(3):687-692. 被引量:7
  • 3汪东树,王全义.一类具时滞和比率的扩散系统正周期解[J].华侨大学学报(自然科学版),2006,27(4):358-361. 被引量:6
  • 4POURNAKI M R, RAZANI A. On the existence of periodic solutions for a class of generalized forced Lienard equations[J]. Appl Math Lett, 2007,20(3): 248-254.
  • 5WANG Weiobing, LUO Zhi-guo. Positive periodic solutions of second-order differential equations[J]. Appl Math Lett, 2007,20(3) : 266-271.
  • 6ZHU Yan-ling, LU Shi-ping. Periodic solutions for p-Laplaeian neutral functional differential equation with multiple deviating arguments[J]. J Math Anal Appl,2007,336(2):1357-1367.
  • 7DING Wei, HAN Mao-an, YAN J u-rang. Periodic boundary value problems for the second order functional differential equations[J]. J Math Anal Appl, 2004,298 (1) : 341-351.
  • 8LIU Bing-wen, HUANG Li-hong. Periodic solutions for a kind of Rayleigh equation with a deviating argument[J]. J Math Anal Appl, 2006,321 (2): 491-500.
  • 9GAINES R E, MAWHIN J L. Coincidence degree and nonlinear differential equation[M]. Berlin: Springer-Verlag, 1977 : 40-60.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部