摘要
根据Euler-Maruyama方法,运用Burkholder-Davis-Gundy不等式,Holder不等式,Young不等式及Gronwall引理,讨论了在局部Lipschitz条件下带跳和Markov调制的随机时滞中性技术进步与投资系统数值解的均方收敛性.
In this paper, the Euler-Maruyama method for stochastic delay neutral technical progress and investment system with jumps and Markovian switching is developed. Applying Burkholder-Davis-Gundy inequality, Holder inequality, Young inequality and Gronwall lemma, the convergence of the numerical solutions in mean square is discussed under the local Lipschitz condition.
出处
《华中师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2012年第2期127-133,共7页
Journal of Central China Normal University:Natural Sciences
基金
国家自然科学基金项目(11061024)