期刊文献+

基于小波和卡尔曼平滑的事件相关电位单次提取 被引量:1

Single Trial Event Related Potential Extraction Based on Wavelet and Kalman Smoother Method
下载PDF
导出
摘要 本研究提出一种事件相关电位单次提取方法,可有效减少实验次数,并可探索实验之间ERP的变异性。此方法基于小波和卡尔曼平滑,首先利用小波变换考察ERP平均信号的时频特性,根据ERP不同分量出现的时间位置,在不同尺度上选取特定的单次实验ERP小波系数构成观测向量,其为真实ERP小波系数状态向量与噪声之和,然后对观测向量进行卡尔曼平滑,最后对卡尔曼平滑后的小波系数进行小波重构,得到单次提取的ERP信号。仿真实验表明,基于小波和卡尔曼平滑的方法不仅信噪比提高约16~18 dB,优于30次叠加平均、简单小波方法和基于高斯基函数的卡尔曼滤波方法,还可以跟踪ERP的幅度趋势变异性。与基于高斯基函数的卡尔曼滤波方法相比,所提方法降低了计算量。真实脑电ERP提取实验表明本方法较好地从单次记录中提取出了事件相关电位,并可解释ERP因适应和应激引起的趋势变异性。 A single trial extraction method of event-related potential(ERP) was proposed.In this wavelet and Kalman smoother based method,wavelet transform was first applied to the averaged ERP to investigate its time-frequency characteristics.According to the time position of different components of ERP,the specific wavelet coefficients of single trial ERP on different scales were chosen to construct the measurement vector,which was filtered by Kalman smoother in the next step.Eventually,the disposed coefficients were reconstructed and the single trial ERP signal was obtained.The simulation experiments showed that the wavelet and Kalman smoother based method improved SNR about 16-18dB,and was better than 30 trial ensemble averaging method and the simple wavelet method.The proposed method could also track the ERP amplitude trend-like variability.The real dataset experiment showed that the method preferably extracted the ERP signal concealed in the ongoing background EEG and habituation or sensitization could explain the trend-like variability.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2012年第2期167-174,共8页 Chinese Journal of Biomedical Engineering
基金 航天医学基础与应用国家重点实验室研究基金(SMFA09A16) 中国航天医学工程预先研究项目(SJ201006)
关键词 事件相关电位 单次提取 小波变换 卡尔曼平滑 趋势变异性 event related potential single trial extraction wavelet transformation Kalman smoother trend-like variation
  • 相关文献

参考文献2

二级参考文献32

  • 1熊新兵,陈亚光.诱发电位提取的子空间和小波去噪复合方法[J].中国组织工程研究与临床康复,2007,11(13):2430-2433. 被引量:2
  • 2KIANOUSH N, AHMAD R S, Mohammad P F. Application of higher order statistics to surface electromyogram signal classification[J]. IEEE Transactions on Biomedical Engineering,2007,54(10) :1762-1769.
  • 3TZYY P J,SCOTT M,MARISSA W,et al. Analysis and visualization of single-trial event-related potentials[J]. Human Brain Mapping ,2001,14 : 166-185.
  • 4ARNOLD N,TAPIOS S. Estimation of parameters and eigenmodes of multivariate autoregressive models[J]. ACM Transactions on Mathematical Software,2001,27(1) :27-57.
  • 5YAN W,MATTHEWT S, et al. Single-trial classification of ERPs using second-order blind identification (SOBI)[C]. Proceedings of 2004 International Conference on Machine Learning and Cybernetics, 2004,7 : 4246-4251.
  • 6SEYEDEHMINA A M,LAMPROS S S, et al. Wavelet filtering of the P300 component in event-related potentials[C]. Proceedings of the 28th IEEE, EMBS Annual International Conference,New York City,USA,2006,28:1719-1722.
  • 7FATOURECHIL M,MASON S G, BIRCHL G E, et al. A wavelet-based approach for the extraction of event related potentials from EEG[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, Canada, 2004,2 : 737-740.
  • 8DARIO F, MARIE-FRANCOISE L, CHRISTIAN D. Optimized wavelets for blind separation of nonstationary surface myoelectric signals[J]. IEEE Transactions on Biomedical Engineering, 2008,55 (1) : 78-86.
  • 9BERNAT E M,WILLIAMS W J,GEHRING W J. Decomposing ERP time-frequency energy using PCA[J]. Clinical Neurophysiology, 2005,116 : 1314-1334.
  • 10TING K H,FUNG P C W, CHANG C Q, et al. Automatic correction of artifact from single-trial event-related potentials by blind source separation using second order statistics only [J]. Medical Engineering &Physics, 2006,28 : 780-794.

共引文献13

同被引文献19

  • 1Disselhorst-Klug C, Schmitz-Rode T, Rau G, et al. Surface electromyography and muscle force: Limits in semg-force relationship and new approaches for applications [ J ]. Clin Biomech ( Bristol, Avon), 2009, 24(3 ) : 225 - 35.
  • 2Blazevich AJ, Gill ND, Zhou S, et al. Intra- and intermuscular variation in human quadriceps femoris architecture assessed in vivo [J]. JAnat, 2006, 209(3): 289 -310.
  • 3Chen Xin, Zheng Yongping, Guo JingYi, et al. Sonomyographic responses during voluntary isometric ramp contraction of the human rectus femoris muscle [J]. Eur J Appl Physiol, 2012, 112(7) : 2603 -2614.
  • 4Fukunaga T, Kubo K, Kawakami Y, et al. In vivo behaviour of human muscle tendon during walking [J]. Proc Biol Sei, 2001 , 268 ( 1464 ) : 229 - 233.
  • 5Hodges PW, Pengel LH, Herbert RD, et al. Measurement of muscle contraction with ultrasound imaging [ J]. Muscle Nerve, 2003, 27 (6) : 682 - 692.
  • 6Kawakami Y, Ichinose Y, Fukunaga T, et al. Architectural and functional features of human triceps surae muscles during contraction [J]. JApplPhysiol (1985), 1998, 85(2): 398- 404.
  • 7Maganaris CN, Baltzopoulos V, Sargeant AJ, et al. In vivomeasurements of the triceps surae complex architecture in man: Implications for muscle function [ J]. J Physiol, 1998, 512 (Pt 2) : 603 -614.
  • 8Herbert RD, Gandevia SC. Changes in pennation with joint angle and muscle torque-in-vivo measurements in human brachialis muscle [ J]. Journal of Physiology-London, 1995,484 (2) : 523 - 532.
  • 9Narici MV, Binzoni T, Hiltbrand E, et al. In vivo human gastrocnemius architecture with changing joint angle at rest and during graded isometric contraction [ J ]. Journal of Physiology- London, 1996, 496(1) : 287 -297.
  • 10Gao F, Zhang LQ. Altered contractile properties of the gastrocnemius muscle poststroke [ J ]. Journal of Applied Physiology, 2008, 105 (6) : 1802 - 1808.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部