期刊文献+

基于概率判决极端学习机的癫痫发作预报研究 被引量:3

Epileptic Seizure Prediction Based on Probabilistic Discriminative Extreme Leaning Machine
下载PDF
导出
摘要 平均预报敏感度和误报率是癫痫发作预报中最为重要的两个指标,针对在提高平均预报敏感度的同时误报率往往也会增高的问题,提出一种基于概率判决极端学习机的癫痫发作预报方法。该方法在利用平均相位相干指数对脑电信号进行特征提取的基础上,采用概率判决极端学习机进行分类,得到定量的分类信息之后,通过确定分类阈值来维持平均预报敏感度与误报率之间的平衡,最后经平滑过滤得到发作预报结果。对21例难治性癫痫病患者的仿真实验表明,本方法的平均预报敏感度可达到80.4%,平均误报率可低至0.10 h-1,具有较好的预报性能;而且训练时间短,为临床的在线应用提供了有价值的参考。 Sensitivity and false-positive rate are two of the most important indicators of epileptic seizure prediction.When the sensitivity is improved,the false-positive rate will increase at the same time.To solve this problem,an epileptic seizure prediction method based on probabilistic discriminative extreme leaning machine(PDELM) was proposed.The method utilized PDELM for classification after extracting features from EEG by using mean phase coherence(MPC).And the probability of each class could be obtained.Then the balance of the sensitivity and the false-positive rate was maintained by determining a threshold.At last,after smoothing by a filter,the prediction results was obtained.Simulations on the 21 intractable epilepsy patients showed that the proposed method not only has a superior prediction performance(the mean sensitivity can reach 80.4% and the mean false-positive rate was as low as 0.10 h-1),but also required a short training time,which provided a valuable reference for the clinical application of epileptic seizure prediction.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2012年第2期175-183,共9页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金(61074096)
关键词 癫痫发作预报 极端学习机 概率判决 平均相位相干 epileptic seizure prediction extreme learning machine probabilisitc discriminative mean phase coherence
  • 相关文献

参考文献3

二级参考文献34

  • 1吴健辉,罗跃嘉.神经元活动的时相同步与脑功能整合[J].心理科学进展,2002,10(4):367-374. 被引量:3
  • 2VAREELA F, LACHAUX J P, RODRIGUE E, et al. The brainweb: phase synchronization and large-scale integration [J]. Nat Rev Neurosci, 2001,2(4) :229-239.
  • 3GRAY C M. The temporal correlation hypothesis of visual feature integration : still alive and well[J]. Neuron, 1999,24 : 31-47.
  • 4ROOPUM K, CUNINGHAM M O, RACCA C, et al. Region-Specific Changes in Gamma and Beta2 Rhythms in NMDA Receptor Dysfunction Models of Schizophrenia [J]. Schizophrenic Bull, 2008,34(5) : 962-973.
  • 5WOMELSDOR T, SCHOFFELEN J M, OOSTENVELD R, et al. Modulation of neuronal interactions through neuronal synchronization[J]. Science, 2007,15 : 1609-1612.
  • 6QUIAN Q R, KRASKOV A, KREUZ T, et al. Performance of different synchronization measures in real data: A case study on electroencephalographic signals[J]. Physical Review E, 2002,65(041903) :1-14.
  • 7PEREDA E, QUIROGA R Q, BHATTACH J. Nonlinear multivariate analysis of neurophysiologic signals [J]. Prog Neurobiol, 2005,77 : 1-37.
  • 8TRUJILLO L T, PETERSON M A, KASZNIAK A W, et al. EEG phase synchrony differences across visual perception conditions may depend on recording and analysis methods[J]. Clinical Neurophysiology, 2005,116(1): 172-189.
  • 9BOB P, PALUS M, SUSTA M, et al. EEG phase synchronization in patients with paranoid schizophrenia[J]. Neurosci Lett, 2008,447(1) :73-77.
  • 10PALVA J M, PALVA S, KAILA K. Phase synchrony among neuronal oscillations in the human cortex[J]. The Journal of Ncuroscicnce, 2005,25(15):3962-3972.

共引文献17

同被引文献33

  • 1段忆翔,郭纯孝,王雁鹏,金钦汉,郭纯宝,张莉.卡尔曼滤波法用于混合氨基酸体系分析[J].化学研究与应用,1994,6(1):11-15. 被引量:6
  • 2王志有,于洪梅,李井会,臧娜,王海洋.BP人工神经网络紫外分光光度法同时测定三种氨基酸[J].生物数学学报,2005,20(2):240-244. 被引量:10
  • 3王雁鹏,董旭辉,陈岩,董树屏.人工神经网络法同时测定混合氨基酸[J].光谱实验室,2006,23(5):1109-1112. 被引量:2
  • 4Goh ATC.Back-propagation neural networks for modeling complex systems[J].Artificial Intelligence in Engineering,1995,9(3):143-151.
  • 5Cortes C,Vapnik V.Support-vector networks[J].Machine Learning,1995,20:273-297.
  • 6Huang Guangbin,Zhu Qinyu,Siew CK.Extreme learning machine:theory and applications[J].Neurocomputing,2006,70(1-3):489-501.
  • 7Huang Guangbin,Chen Lei.Enhanced random search based incremental extreme learning machine[J].Neurocomputing,2008,71(16-18):3460-3468.
  • 8Huang Guangbin,Ding Xiaojian,Zhou Hongming.Optimization method based extreme learning machine for classification[J].Neurocomputing,2010,74(1-3):155-163.
  • 9Huang Guangbin,Zhou Hongming,Ding Xiaojian,et al.Extreme learning machine for regression and multiclass classification[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2012,42(2):513-529.
  • 10Wang Guoren,Zhao Yi,Wang Di.A protein secondary structure prediction framework based on the extreme learning machine[J].Neurocomputing,2008,72(1-3):262-268.

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部