期刊文献+

基于小波子空间集成的人脸识别 被引量:4

Face recognition based on ensemble of wavelet subspaces
原文传递
导出
摘要 基于小波变换的人脸识别方法通常选用低频子图进行人脸识别,这样会丢失其他子段图像中的识别信息。针对这一问题,提出了两种小波子空间集成人脸识别方法并与其他相关方法进行了实验比较。第1种方法集成每1层小波低频子空间图像进行人脸识别;第2种方法首先对人脸图像做L层小波分解,然后对每1层的3个高频子空间图像求平均,连同每层的1个低频子空间图像得到L个小波子空间图像,最后集成这L个小波子空间图像进行人脸识别。本文提出的方法充分利用了不同频率小波子段图像的识别信息,能够提高人脸识别的精度。在ORL、YALE和JAFFE 3个人脸数据库上的实验结果显示,本文提出的方法特别是方法 2在识别精度方面都优于其他方法。 The low frequency subimage is usually used for face recognition based on wavelet transform (WT) methods. However, some important information hidden in other high frequency subimages will be unavoidably lost. To solve this problem, two methods were presented for face recognition by ensemble of wavelet subspaces, and the comparisons with other related methods were put forth by experiments. In the first method, the wavelet low frequency subimages at each layer were integrated for face recognition. In the second method, face images were first decomposed into different sub- images with L layer wavelet transform, and then L wavelet subspace images were obtained by averaging three high fre- quency subimages of each layer and integrating the low frequency subimage of each layer. Finally the L wavelet sub- space images were integrated for face recognition. The proposed methods could make full use of the information provid- ed by the different frequency subimages and the accuracy of face recognition was improved. The experimental results of three face databases (ORL, YALE, and JAFFE) showed that the proposed methods, especially the second method, could obtain a higher accuracy than other related methods.
出处 《山东大学学报(工学版)》 CAS 北大核心 2012年第2期1-6,29,共7页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(61170040) 河北省自然科学基金资助项目(F2010000323) 河北省高等学校科学技术研究重点项目(ZD2010139) 河北大学大学生科技创新项目(2011043)
关键词 人脸识别 小波变换 子空间集成 二维主成分分析 二维线性判别分析 face recognition wavelet transform ensemble subspaces 2D principal component analysis (2DPCA) 2D linnear discriminant analysis (2DLDA)
  • 相关文献

参考文献2

二级参考文献27

共引文献21

同被引文献32

  • 1李建华,杨铁梅,马壮.基于小波分析的人脸图像处理[J].计量与测试技术,2009,36(4):10-11. 被引量:4
  • 2崔光照,曹祥红,王延峰,张勋才.生物信息学中的数字信号处理方法研究[J].科学技术与工程,2005,5(20):1494-1497. 被引量:5
  • 3李跃华,张兰凤.抑郁症研究现状及未来研究目标探讨[J].中国中医药信息杂志,2006,13(10):1-3. 被引量:16
  • 4Kohenen. Self-organization and associative memory. New York:Springer Verlag, 1988.
  • 5Krzanowski W J, Jonathan P, Mccarthy W V, et al. Discriminant a- nalysis with singular covariance matrices:methods and applications to spectroscopic data. Applied Statistics, 1995 ,44 ( 11 ) : 101-115.
  • 6Yu Hua , Yang Jie. A direct LDA algorithm for high-dimensional data with application to face recognition. Pattern Recognition, 2001 , 34(10):2067-2070.
  • 7Symmetry L M. Causality M : London : MIT Press, 1992.
  • 8边肇模,张学工.模式识别[M].2版.北京:清华大学出版社,2003.
  • 9章毓晋.图像工程(中册)[M].3版.北京:清华大学出版社,2012.
  • 10TURK M, PENTLAND A. Eigen -faces for recognition [J]. Journal of cognitive neuroscience, 1991, 3 ( 1 ) : 71 - 86.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部