期刊文献+

永磁同步电机的转动惯量辨识及状态估计 被引量:13

Identification of inertia and state estimation for PMSM
原文传递
导出
摘要 为提高永磁同步电机伺服系统的动态性能和鲁棒性,研究了基于模型参考自适应系统的转动惯量辨识方法以及基于卡尔曼滤波器的自适应状态估计策略。提出了一种适用于宽转速、高噪声环境下的电机角速度、角位移和负载扰动转矩的在线估计方法,分析了该方法的抗干扰能力以及系统参数变化对估计效果的影响,并通过辨识出的伺服系统转动惯量对卡尔曼滤波器的系数矩阵进行实时更新,实现了转动惯量自适应状态估计。仿真和实验结果表明该算法在速度分辨率、实时性和抗干扰能力上均优于传统M/T方法。 Based on theories of the model reference adaptive system (MRAS) and the Kalman filter, the online inertia identification and state estimation of permanent magnet synchronous motor (PMSM) servo system were respectively studied for improving the dynamic performance and robustness. In the proposed algorithm, an optimal state estimator based on the Kalman filter was used to provide exact estimation for the rotor speed, rotor position and disturbance torque in a random noisy environment. Also, the MRAS was incorporated to identify the variations of inertia moment real time, and the identified inertia was used to adapt the EKF for better dynamic performance. In addition, the disturbancerejection ability to variations of the mechanical parameters was discussed, and it was verified that the system was robust to the modeling error and system noise. Simulation and experimental results showed that, compared with the M/T method, the proposed technique had better performance in speed resolution, real-time and anti-interference ability.
出处 《山东大学学报(工学版)》 CAS 北大核心 2012年第2期70-76,82,共8页 Journal of Shandong University(Engineering Science)
基金 山东省科技攻关项目(2009GG10004006)
关键词 模型参考自适应 转动惯量辨识 卡尔曼滤波器 状态估计 永磁同步电机 model reference adaptive system inertia identification Kalman filter state estimation permanent magnet synchronous motor
  • 相关文献

参考文献19

  • 1CHIASSON J.Modeling and high-performance control ofelectric machines[M].New York:The Institute of Elec-trical and Electronics Engineers,Inc,2005.
  • 2刘永钦,沈艳霞,纪志成.基于改进型最小二乘法的感应电机转动惯量辨识[J].电机与控制应用,2008,35(12):13-17. 被引量:23
  • 3卢少武,唐小琦,宋宝.伺服系统转动惯量辨识及其应用[J].微电机,2011,44(10):41-43. 被引量:14
  • 4刘旭,阮毅,张朝艺.一种异步电机转动惯量辨识方法[J].电机与控制应用,2009,36(9):1-3. 被引量:10
  • 5HORI Y.High performance control of servomotors withlow precision shaft encoder using instantaneous speed ob-server and adaptive identification of inertia moment[C]//Asia-Pacific Workshop on Advances in Motion Control.[S.l.]:Institute of Electrical and Electronics Engineers,1993:7-12.
  • 6孙丽玲,许伯强,李和明.基于参数辨识技术的永磁同步电动机参数测定[J].华北电力大学学报(自然科学版),2002,29(4):26-29. 被引量:5
  • 7TELFORD D,DUNNIGAN M W,WILLIAMS B W.Online identification of induction machine electrical pa-rameters for vector control loop tuning[J].IEEE Trans-actions on Industrial Electronics,2003,50(2):253-261.
  • 8KARANAYIL B,RAHMAN M F,GRANTHAM C.On-line stator and rotor resistance estimation scheme for vec-tor-controlled induction motor drive using artificial neuralnetw orks[C]//38th IAS Annual Meeting.Salt Lake Cit-y:Institute of Electrical and Electronics Engineers:132-139.
  • 9雷华,王明渝.基于神经网络的速度估计方法[J].重庆大学学报(自然科学版),2004,27(2):107-110. 被引量:8
  • 10HORI Y.Robust and adaptive control of a servomotor u-sing low precision shaft encoder[C]//IEEE Internation-al Conference on Industrial Electronics,Control and In-strumentation.Haw aii:Institute of Electrical and Elec-tronics Engineers,1993:73-78.

二级参考文献35

共引文献141

同被引文献120

引证文献13

二级引证文献129

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部