期刊文献+

Preparation and Electrochemical Characteristics of Three-dimensional Manganese Oxide Micro-supercapacitor Electrode

Preparation and Electrochemical Characteristics of Three-dimensional Manganese Oxide Micro-supercapacitor Electrode
下载PDF
导出
摘要 以便增加电极表面区域并且提高费用存储能力,我们学习微电镀物品制作三维的高方面比率的机械系统技术微电极的结构基于玻璃。阳极的经常的潜在的方法被采用在微电极的表面上作为 electroactive 物质扔锰氧化物。周期的 voltammetry 和经常的当前的费用分泌物方法两个都被用来电气化学的性能测试准备电极,与没有为比较的结构的一个二维的电极。试验性的结果证明那三维的电极结构能有效地提高费用存储能力。在 1.0 mA/cm2 费用分泌物密度,三维的电极显示出 17.88 mF/cm2 的一个电容,比二维的电极高七倍。 In order to increase the electrode surface area and enhance the charge storage capacity, we study the micro electro mechanical system technology to fabricate three-dimensional high aspect ratio micro-electrode structure based on glass. The anodic constant potential method is employed to deposit manganese oxide as electroactive substances on the micro-electrode surface. Cyclic voltammetry and constant current charge-discharge method are both used to prepare electrode electrochemical performance testing, with a two-dimensional electrode without structure for comparison. Experimental results show that three-dimensional elec- trode structure can effectively enhance the charge storage capacity. At 1.0 mA/cm2 charge- discharge density, the three-dimensional electrode shows a capacitance of 17.88 mF/cm2, seven times higher than the two-dimensional electrode.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2012年第2期209-213,I0004,共6页 化学物理学报(英文)
关键词 电化学特性 超级电容器 三维电极 锰氧化物 微电极 微机电系统技术 制备 微型 Micro-supercapacitor, Micro electro mechanical system, Three-dimensional electrode, Manganese oxide
  • 相关文献

参考文献25

  • 1Z. Y. Wen, Z. Q. Wen, X. F. He, H. Y. Liao, and H. T Liu, Chin. J. Mechan. Engine. 44, 75 (2008).
  • 2X. P Wang, Z. You, and D. B Ruan, Chin. J. Chem Phys. 18, 635 (2005).
  • 3B. E. Conway, J. Electrochem. Soc. 138, 1539 (1991).
  • 4X. F Wang, D. B Ruan, and Z. You, Chin. J. Chem. Phys. 19, 499 (2006).
  • 5T. Liu, H. Y. Zhang, F. Wang, J. Shi, P. L. Ci, L. W. Wang, S. L. Ge, Q. J Wang, and P. K. Chu, Mater. Sci. Eng. 176, 387 (2011).
  • 6M. Beidaghi and C. Wang, Electrochim. Acta 56, 9508 (2011).
  • 7C. C. Liu, D. S. Tsai, W. H. Chung, K. W. Li, K. Y. Lee, and Y. S. Huang, J. Power Sources 196, 5761 (2011).
  • 8D. Peeh, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P. L. Taberna, and P. Simon, Nat. Nan- otechnol. 5, 651 (2010).
  • 9C. C. Liu, D. S. Tsai, D. Susartti, W. C. Yeh, Y. S. Huang, and F. J. Liu, Electrochim. Acta 55, 5768 (2010).
  • 10W. Chen, M. Beidaghi, V. Penmatsa, K. Bechtold, L. Kumari, W. Z. Li, and C. L. Wang, IEEE Trans. Nan- otechnol. 9, 734 (2010).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部