摘要
研究离散型时滞随机神经网络的同步问题,考虑了参数不确定性,解决离散型分布时滞对神经网络同步问题的影响.基于主从同步的概念,设计一个有更广泛应用的控制器,应用Lyapunov稳定性理论和线性矩阵不等式工具箱,得到这类神经网络同步的充分性判据.最后给出实际例子,检验了判据的有效性.
The global asymptotical synchronization problem is discussed for a general class of uncertain stochastic discrete - time neural networks with time delay in this paper. Time delays include time - va- rying delay and distributed delay. A better controller is designed for synchronization. Based on the drive- response concept and the Lyapunov stability theorem, a linear matrix inequality (LMI) ap- proach is exploited to establish sufficient conditions under which the considered neural networks are globally asymptotically synchronized in the mean square.
出处
《福州大学学报(自然科学版)》
CAS
CSCD
北大核心
2012年第2期198-203,共6页
Journal of Fuzhou University(Natural Science Edition)
基金
广东省自然科学基金资助项目(0314957301275)
广东省韶关学院科研资助项目(20120102)
关键词
神经网络
离散时滞
分布时滞
随机动力系统
同步
neural networks
time -varying delays
distributed delays
stochastic delayed dynamical system
synchronization